Updating nucleosome positions within individual genes using molecular modeling methods and mnase sequencing data

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Organization of chromatin plays an important role in regulating the genetic machinery of the cell. The basic unit of chromatin packaging is a nucleosome, which harbors DNA of about 145 base pairs in length. The packaging of genetic material and its accessibility to transcription enzymes and other regulatory chromatin proteins depends on the positions of nucleosomes. MNase sequencing is used to examine nucleosome positions in a genome. MNase sequencing data are sufficient for detecting the presence of nucleosomes on the sequence, but a determination of the precise locations of nucleosomes can be problematic. Accurate determination of nucleosome positions requires additional data filtering and processing. In this study, using MNase sequencing data, a combined method based on geometric analysis of nucleosome chain molecular models is proposed for selecting possible nucleosome positions. The developed algorithm efficiently eliminates inaccessible nucleosome chain combinations and conformationally prohibited nucleosome positions.

Sobre autores

V. Vasilev

Lomonosov Moscow State University

Moscow, Russia

D. Ryabov

Lomonosov Moscow State University

Moscow, Russia

A. Shaytan

Lomonosov Moscow State University

Moscow, Russia

G. Armeev

Lomonosov Moscow State University

Email: armeev@intbio.org
Moscow, Russia

Bibliografia

  1. G. S. Omenn, Mol. Cell. Proteomics, 20, 100062 (2021).
  2. P. T. Lowary and J. Widom, J. Mol. Biol., 276 (1), 19 (1998).
  3. J. Ocampo, et al., Nucl/ Acids Res., 44 (10), 4625 (2016).
  4. G.-C. Yuan, et al., Science, 309 (5734), 626 (2005).
  5. W. Lee, et al., Nature Genet., 39 (10), 1235 (2007).
  6. D. S. Saxton and J. Rine, Proc. Natl. Acad. USA, 117 (44), 27493 (2020).
  7. J. Feser and J. Tyler, FEBS Lett., 585 (13), 2041 (2011).
  8. G. A. Armeev, et al., Nature Commun., 12 (1), 2387 (2021).
  9. C. Dingwall, G. P. Lomonossoff, and R. A. Laskey, Nucl. Acids Res., 9 (12), 2659 (1981).
  10. T.-H. S. Hsieh, et al., Cell, 162 (1), 108 (2015).
  11. R. Schopflin, et al., Bioinformatics, 29 (19), 2380 (2013).
  12. X. Zhou, et al., eLife, 5, e16970 (2016).
  13. H. A. Cole, et al., Nucl. Acids Res., 44 (2), 573 (2016).
  14. R. Leinonen, H. Sugawara, and M. Shumway, Nucl. Acids Res., 39 (Database issue), D19 (2011).
  15. B. Langmead and S. L. Salzberg, Nature Methods, 9 (4), 357 (2012).
  16. K. Waern and M. Snyder, G3: Genes, Genomes, Genetics, 3 (2), 343 (2013).
  17. D. Vasudevan, E. Y. D. Chua, and C. A. Davey, J. Mol. Biol., 403 (1), 1 (2010).
  18. T. Tsukiyama, et al., Genes Dev., 13 (6), 686 (1999).
  19. N. Kepper, et al., Biophys. J., 95 (8), 3692 (2008).
  20. D. Norouzi, et al., AIMS Biophys., 2 (4), 613 (2015).
  21. V. B. Zhurkin and D. Norouzi, Biophys. J., 120 (4), 577 (2021).
  22. R. V. Chereji, T. D. Bryson, and S. Henikoff, Genome Biol., 20 (1), 198 (2019).
  23. J. S. Mitchell, et al., J. Chem. Theory Comput., 13 (4), 1539 (2017).

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2023