Impact of Immobilization Method on DNA Stretching Characteristics

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The problem of stretching a flexible polymer with given conditions at the ends, under the action of a fixed force, is considered. A mathematical model is constructed for different energy functions describing the elasticity of the polymer and different immobilization methods. It is shown that the dependence of stretching on the polymer length is linear. Numerical results are given. The results obtained allow to improve the analysis of experimental data on polymer stretching. The theory offers several verifiable predictions, and experimental methods are proposed to improve the accuracy of measurements.

Sobre autores

M. Didin

Moscow Institute of Physics and Technology

Email: didin.maxim@yandex.ru
Dolgoprudny, Russia

Bibliografia

  1. Marko J. F. and Siggia E. D. Stretching DNA. Macromolecules , 28 (26), 8759-8770 (1995). doi: 10.1021/ma00130a008
  2. Shon M. J., Rah S. H., and Yoon T. Y. Submicrometer elasticity of double-stranded DNA revealed by precision force-extension measurements with magnetic tweezers. Sci. Adv., 5 (6), eaav1697 (2019). doi: 10.1126/sciadv.aav1697
  3. Smith S. B., Finzi L., and Bustamante C. Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads. Science, 258 (5085), 11221126 (1992). doi: 10.1126/science.1439819
  4. Seol Y., Li J., Nelson P. C., Perkins T. T., and Betterton M. D. Elasticity of short DNA molecules: theory and experiment for contour lengths of 0.6-7 microm. Biophys J., 93 (12), 4360-4373. (2007). DOI: 10,1529/biophysj,107,112995
  5. Fiasconaro A. and Falo F. Elastic traits of the extensible discrete wormlike chain model. Phys. Rev. E., 107 (2), 024501 (2023). doi: 10.1103/PhysRevE.107.024501
  6. Kratky-Porod Chain [Electronic resource]. URL: https://www.polymerdatabase.com/polymer%20physics/Worm-like%20Chain.html (accessed: 01.08.2023).
  7. Livadaru L., Netz R. R., and Kreuzer H. J. Stretching Response of discrete semiflexible polymers. Macromolecules, 36 (10), 3732-3744 (2003). doi: 10.1021/ma020751g
  8. Koslover E. F. and Spakowitz A. J. Discretizing elastic chains for coarse-grained polymer models. Soft Matter, 9 (29), 7016-7027 (2013). doi: 10.1039/C3SM50311A
  9. Wiggins P. A. and Nelson P. C. Generalized theory of semiflexible polymers. Phys. Rev. E. Stat. Nonlin. Soft Matter Phys. 73 (3, Pt 1), 031906 (2006). doi: 10.1103/PhysRevE.73.031906
  10. Andersen N. T., Teng Y., and Chen J. Z. Y. Stretching a Semiflexible Polymer of Finite Length // Macromolecules, 55 (1), 210-216 (2022). doi: 10.1021/acs.macromol.1c02087
  11. Vologodskii A. and Frank-Kamenetskii M. D. Strong bending of the DNA. double helix. Nucl. Acids Res., 41 (14), 6785-6792 (2013). doi: 10.1093/nar/gkt396
  12. Drozdetski A. V, Mukhopadhyay A., and Onufriev A. V. Strongly bent double-stranded DNA: reconciling theory and experiment. Front. Phys. 7, 195 (2019). doi: 10.3389/fphy.2019.00195
  13. Fosdick R. L. and James R. D. The elastica and the problem of the pure bending for a non-convex stored energy function. J. Elasticity, 11 (2), 165-186 (1981).

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2024