The Reparative dna Polymerase eta (Polη) Plays a key Role in Mutagenesis at Low Doses of uv Radiation in Yeast Saccharomyces cerevisiae
- Авторлар: Alekseeva E.A.1,2, Evstyukhina T.A.1,2, Skobeleva I.I.1, Peshekhonov V.T.1,2, Korolev V.G.1,2
-
Мекемелер:
- Konstantinov Petersburg Nuclear Physics Institute of the National Research Centre “Kurchatov Institute”
- Kurchatov Genome Center — Petersburg Nuclear Physics Institute
- Шығарылым: Том 60, № 12 (2024)
- Беттер: 25–35
- Бөлім: ГЕНЕТИКА МИКРООРГАНИЗМОВ
- URL: https://rjonco.com/0016-6758/article/view/676592
- DOI: https://doi.org/10.31857/S0016675824120035
- EDN: https://elibrary.ru/waumsd
- ID: 676592
Дәйексөз келтіру
Аннотация
Under normal conditions and when exposed to low doses of mutagens, DNA damage tolerance systems (DDT) are a key way to combat DNA damage in bacterial and eukaryotic cells. Two different DDT pathways, erroneous (translesion synthesis – TLS) and error-free (recombination), operate in all eukaryotic organisms. TLS involves the protein complex polymerase zeta (Polζ) (encoded by the genes REV1, REV3 and REV7), and polymerase eta (Polη) (encoded by the RAD30 gene); these polymerases are conserved from yeast to humans. We have shown that at low levels of UV radiation doses, a decisive role in mutagenesis is played by the high activity of Poly, which bypasses the overwhelming number of DNA damage that got in the way of the replication machine. Both in the case of irradiation with high and low doses of UV rays, checkpoint plays an important role in induced mutagenesis. However, the roles of genes involved in the regulation of UV-induced mutagenesis at low and high doses often differ. Inactivation of the RAD30 gene at low doses leads to an increased level of induced mutagenesis, and at high doses it practically does not differ from the level of the wild-type strain. Deletions of the HIM1, HSM3 and HIF1 genes, on the contrary, reduce the high level of mutagenesis characteristic of high doses to the level of the wild-type strain at low doses. These differences characterize the local and global checkpoint.
Негізгі сөздер
Толық мәтін

Авторлар туралы
E. Alekseeva
Konstantinov Petersburg Nuclear Physics Institute of the National Research Centre “Kurchatov Institute”; Kurchatov Genome Center — Petersburg Nuclear Physics Institute
Хат алмасуға жауапты Автор.
Email: alekseeva_ea@pnpi.nrcki.ru
Ресей, Leningrad oblast, Gatchina, 188300; Leningrad oblast, Gatchina, 188300
T. Evstyukhina
Konstantinov Petersburg Nuclear Physics Institute of the National Research Centre “Kurchatov Institute”; Kurchatov Genome Center — Petersburg Nuclear Physics Institute
Email: alekseeva_ea@pnpi.nrcki.ru
Ресей, Leningrad oblast, Gatchina, 188300; Leningrad oblast, Gatchina, 188300
I. Skobeleva
Konstantinov Petersburg Nuclear Physics Institute of the National Research Centre “Kurchatov Institute”
Email: alekseeva_ea@pnpi.nrcki.ru
Ресей, Leningrad oblast, Gatchina, 188300
V. Peshekhonov
Konstantinov Petersburg Nuclear Physics Institute of the National Research Centre “Kurchatov Institute”; Kurchatov Genome Center — Petersburg Nuclear Physics Institute
Email: alekseeva_ea@pnpi.nrcki.ru
Ресей, Leningrad oblast, Gatchina, 188300; Leningrad oblast, Gatchina, 188300
V. Korolev
Konstantinov Petersburg Nuclear Physics Institute of the National Research Centre “Kurchatov Institute”; Kurchatov Genome Center — Petersburg Nuclear Physics Institute
Email: alekseeva_ea@pnpi.nrcki.ru
Ресей, Leningrad oblast, Gatchina, 188300; Leningrad oblast, Gatchina, 188300
Әдебиет тізімі
- Lazzaro F., Giannattasio M., Puddu F. et al. Checkpoint mechanisms at the intersection between DNA damage and repair // DNA Repair. 2009. V. 8. P. 1055–1067. doi: 10.1016/j.dnarep.2009.04.022
- Prakash L. Characterization of postreplication repair in Saccharomyces cerevisiae and effects of rad6, rad18, rev3 and rad52 mutations // Mol. Gen. Genet. 1981. V. 184. P. 471–478. doi: 10.1007/BF00352525
- Baynton K., Bresson-Roy A., Fuchs R.P.P. Analysis of damage tolerance pathways in Saccharomyces cerevisiae: A requirement for Rev3 DNA polymerase in translesion synthesis // Mol. Cell. Biol. 1998. V. 18. P. 960–966. doi: 10.1128/MCB.18.2.960
- Hishida T., Kubota Y., Carr A.M., Iwasaki H. RAD6–RAD18–RAD5-pathway-dependent tolerance to chronic low-dose ultraviolet light // Nature. 2009. V. 457. P. 612–615. doi: 10.1038/nature07580
- Huang D., Piening B.D., Paulovich A.G. The preference for error-free postreplication repair in Saccharomyces cerevisiae exposed to low-dose methyl methanesulfonate is cell cycle dependent // Mol. Cell. Biol. 2013. V. 33. P. 1515–1527. doi: 10.1128/MCB01392-12
- Zhang H., Lawrence C.W. The error-free component of the RAD6/RAD18 DNA damage tolerance pathway of budding yeast employs sister-strand recombination // Proc. Natl Acad. Sci. USA. 2005. V. 102. P. 15954–15959. doi: 10.1073/pnas.0504586102
- Forey R., Poveda A., Sharma S. et al. Mec1 is activated at the onset of normal S phase by low-dNTP pools impending DNA replication // Mol. Cell. 2020. V. 78. P. 396–410. doi: 10.1016/molcel.2020.02.021
- Tercero J.A., Longhese M.P., Diffley J.F. A central role for DNA replication forks in checkpoint activation and response // Mol. Cell. 2003. V. 11. P. 1323–1336. doi: 10.1016/s1097-2765(03)00169-2
- Захаров И.А., Кожин С.А., Кожина Т.А. и др. Сборник методик по генетике дрожжей-сахаромицетов. Л.: Наука, 1984, изд. 2-е. 144 с.
- Fedorova I.V., Kovaltzova S.V., Gracheva L.M. et al. Requirement of HSM3 gene for spontaneous mutagenesis in Saccharomyces cerevisiae // Mutat. Res. 2004. V. 554. P. 65–75. doi: 10.1016/j.mrfmmm.2004.03.003
- Evstyukhina T.A., Alekseeva E.A., Fedorov D.V. et al. Genetic analysis of the Hsm3 protein function in yeast Saccharomyces cerevisiae NuB4 complex // Genes. 2021. V. 12. doi: 10.3390/ genes12071083
- Evstyukhina T.A., Alekseeva E.A., Peshekhonov V.T. et al. The role of chromatin assembly factors in induced mutagenesis at low levels of DNA damage // Genes. 2023. V. 14. doi: 10.3390/genes14061242
- Johnson R.E., Prakash S., Prakash L. Efficient bypass of a thymine-thymine dimer by yeast DNA polymerase, Polη // Science. 1999. V. 283. P. 1001–1004. doi: 10.1126/science.283.5404.1001
- Prakash S., Johnson R.E., Prakash L. Eukaryotic translesion synthesis DNA polymerases: specificity of structure and function // Annu. Rev. Biochem. 2005. V. 74. P. 317–353. doi: 10.1146/annurev.biochem.74.082803.133250
- Wang Z., Xiao W. Distinct requirement for budding yeast Rev1 and Polη in translesion DNA synthesis across different types of DNA damage // Curr. Genet. 2020. V. 5. P. 1019–1028. doi: 10.1007/s00294-020-01092-w
- Kozmin S.G., Pavlov Y.I., Kunkel T.A., Sage E. Roles of Saccharomyces cerevisiae DNA polymerases Polη and Polζ in response to irradiation by simulated sunlight // Nucl. Acids Res. 2003. 2003. V. 31. P. 4541–4552. doi: 10.1093/nar/gkg489
- Sobolevska A., Halas A., Plachta M. et al. Regulation of the abudance of Y-family polymerases in the cell cycle of budding yeast in response to DNA damage // Curr. Genet. 2020. V. 66. P. 749–763. doi: 10.1007/s00294-020-01061-3
- Alekseeva E.A., Evstyukhina T.A., Peshekhonov V.T. et al. The Role of the RPD3 complex of Saccharomyces cerevisiae yeast in the activation of UV-induced expression of RNR complex genes // J. Biomed. Res. Environ. Sc. 2024. V. 5. P. 360–372. doi: 10.37871/jbres1902
- Alekseeva E.A., Evstyukhina T.A., Peshekhonov V.T., Korolev V.G. Participation of the HIM1 gene of yeast Saccharomyces cerevisiae in the error-free branch of post-replicative repair and role Polη in him1-dependent mutagenesis // Curr. Genet. 2021. V. 67. P. 141–151. doi: 10.1007/s00294-020-01115-6
- Zhao X., Chabes A., Domkin V. et al. The ribonucleotide reductase inhibitor Sml1 is a new target of the Mec1/Rad53 kinase cascade during growth and in response to DNA damage // EMBO J. 2001. V. 20. P. 3544–3553. doi: 10.1093/emboj/20.13.3544
- Chabes A., Georgieva B., Domkin V. et al. Survival of DNA damage in yeast directly depends on increased dNTP levels allowed by relaxed feedback inhibition of ribonucleotide reductase // Cell. 2003. V. 112. P. 391–401. doi: 10.1016/s0092-8674(03)00075-8
- Haracska L., Johnson R.E., Prakash L., Prakash S. Efficient and accurate replication in the presence of 7,8-dihidro-8-oxoguanine bt DNA polymerase eta // Nature genet. 2000. V. 25. P. 458–461. doi: 10.1038/78169
- Watanabe K., Tateishi S., Kawasuji M. et al. Rad18 guides poleta to replication stalling sites through physical interaction and PCNA monoubiquitination // EMBO J. 2004. V. 23. P. 3886–3896. doi: 10.1038/sj.emboj.7600383.
- Durando M., Tateishi S., Vaziri C. A non-catalytic role of DNA polymerase eta in recruiting Rad18 and promoting PCNA monoubiquitination at stalled replication forks // Nucl. Acids Res. 2013. V. 41. P. 3079–3093. doi: 10.1093/nar/gkt016
- Ripley B.M., Gildenberg M.S., Washington M.T. Control of DNA damage bypass by ubiquitylation of PCNA // Genes. 2020. V. 11. P. 138. doi.org/10.3390/genes11020138
- Fedorova I.V., Gracheva L.M., Kovaltzova S.V. et al. The yeast HSM3 gene acts in one of the mismatch repair pathways // Genetics. 1998. V. 148. P. 963–973. doi: 10.1093/genetics/148.3.963
Қосымша файлдар
