The Reparative dna Polymerase eta (Polη) Plays a key Role in Mutagenesis at Low Doses of uv Radiation in Yeast Saccharomyces cerevisiae

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Under normal conditions and when exposed to low doses of mutagens, DNA damage tolerance systems (DDT) are a key way to combat DNA damage in bacterial and eukaryotic cells. Two different DDT pathways, erroneous (translesion synthesis – TLS) and error-free (recombination), operate in all eukaryotic organisms. TLS involves the protein complex polymerase zeta (Polζ) (encoded by the genes REV1, REV3 and REV7), and polymerase eta (Polη) (encoded by the RAD30 gene); these polymerases are conserved from yeast to humans. We have shown that at low levels of UV radiation doses, a decisive role in mutagenesis is played by the high activity of Poly, which bypasses the overwhelming number of DNA damage that got in the way of the replication machine. Both in the case of irradiation with high and low doses of UV rays, checkpoint plays an important role in induced mutagenesis. However, the roles of genes involved in the regulation of UV-induced mutagenesis at low and high doses often differ. Inactivation of the RAD30 gene at low doses leads to an increased level of induced mutagenesis, and at high doses it practically does not differ from the level of the wild-type strain. Deletions of the HIM1, HSM3 and HIF1 genes, on the contrary, reduce the high level of mutagenesis characteristic of high doses to the level of the wild-type strain at low doses. These differences characterize the local and global checkpoint.

Толық мәтін

Рұқсат жабық

Авторлар туралы

E. Alekseeva

Konstantinov Petersburg Nuclear Physics Institute of the National Research Centre “Kurchatov Institute”; Kurchatov Genome Center — Petersburg Nuclear Physics Institute

Хат алмасуға жауапты Автор.
Email: alekseeva_ea@pnpi.nrcki.ru
Ресей, Leningrad oblast, Gatchina, 188300; Leningrad oblast, Gatchina, 188300

T. Evstyukhina

Konstantinov Petersburg Nuclear Physics Institute of the National Research Centre “Kurchatov Institute”; Kurchatov Genome Center — Petersburg Nuclear Physics Institute

Email: alekseeva_ea@pnpi.nrcki.ru
Ресей, Leningrad oblast, Gatchina, 188300; Leningrad oblast, Gatchina, 188300

I. Skobeleva

Konstantinov Petersburg Nuclear Physics Institute of the National Research Centre “Kurchatov Institute”

Email: alekseeva_ea@pnpi.nrcki.ru
Ресей, Leningrad oblast, Gatchina, 188300

V. Peshekhonov

Konstantinov Petersburg Nuclear Physics Institute of the National Research Centre “Kurchatov Institute”; Kurchatov Genome Center — Petersburg Nuclear Physics Institute

Email: alekseeva_ea@pnpi.nrcki.ru
Ресей, Leningrad oblast, Gatchina, 188300; Leningrad oblast, Gatchina, 188300

V. Korolev

Konstantinov Petersburg Nuclear Physics Institute of the National Research Centre “Kurchatov Institute”; Kurchatov Genome Center — Petersburg Nuclear Physics Institute

Email: alekseeva_ea@pnpi.nrcki.ru
Ресей, Leningrad oblast, Gatchina, 188300; Leningrad oblast, Gatchina, 188300

Әдебиет тізімі

  1. Lazzaro F., Giannattasio M., Puddu F. et al. Checkpoint mechanisms at the intersection between DNA damage and repair // DNA Repair. 2009. V. 8. P. 1055–1067. doi: 10.1016/j.dnarep.2009.04.022
  2. Prakash L. Characterization of postreplication repair in Saccharomyces cerevisiae and effects of rad6, rad18, rev3 and rad52 mutations // Mol. Gen. Genet. 1981. V. 184. P. 471–478. doi: 10.1007/BF00352525
  3. Baynton K., Bresson-Roy A., Fuchs R.P.P. Analysis of damage tolerance pathways in Saccharomyces cerevisiae: A requirement for Rev3 DNA polymerase in translesion synthesis // Mol. Cell. Biol. 1998. V. 18. P. 960–966. doi: 10.1128/MCB.18.2.960
  4. Hishida T., Kubota Y., Carr A.M., Iwasaki H. RAD6–RAD18–RAD5-pathway-dependent tolerance to chronic low-dose ultraviolet light // Nature. 2009. V. 457. P. 612–615. doi: 10.1038/nature07580
  5. Huang D., Piening B.D., Paulovich A.G. The preference for error-free postreplication repair in Saccharomyces cerevisiae exposed to low-dose methyl methanesulfonate is cell cycle dependent // Mol. Cell. Biol. 2013. V. 33. P. 1515–1527. doi: 10.1128/MCB01392-12
  6. Zhang H., Lawrence C.W. The error-free component of the RAD6/RAD18 DNA damage tolerance pathway of budding yeast employs sister-strand recombination // Proc. Natl Acad. Sci. USA. 2005. V. 102. P. 15954–15959. doi: 10.1073/pnas.0504586102
  7. Forey R., Poveda A., Sharma S. et al. Mec1 is activated at the onset of normal S phase by low-dNTP pools impending DNA replication // Mol. Cell. 2020. V. 78. P. 396–410. doi: 10.1016/molcel.2020.02.021
  8. Tercero J.A., Longhese M.P., Diffley J.F. A central role for DNA replication forks in checkpoint activation and response // Mol. Cell. 2003. V. 11. P. 1323–1336. doi: 10.1016/s1097-2765(03)00169-2
  9. Захаров И.А., Кожин С.А., Кожина Т.А. и др. Сборник методик по генетике дрожжей-сахаромицетов. Л.: Наука, 1984, изд. 2-е. 144 с.
  10. Fedorova I.V., Kovaltzova S.V., Gracheva L.M. et al. Requirement of HSM3 gene for spontaneous mutagenesis in Saccharomyces cerevisiae // Mutat. Res. 2004. V. 554. P. 65–75. doi: 10.1016/j.mrfmmm.2004.03.003
  11. Evstyukhina T.A., Alekseeva E.A., Fedorov D.V. et al. Genetic analysis of the Hsm3 protein function in yeast Saccharomyces cerevisiae NuB4 complex // Genes. 2021. V. 12. doi: 10.3390/ genes12071083
  12. Evstyukhina T.A., Alekseeva E.A., Peshekhonov V.T. et al. The role of chromatin assembly factors in induced mutagenesis at low levels of DNA damage // Genes. 2023. V. 14. doi: 10.3390/genes14061242
  13. Johnson R.E., Prakash S., Prakash L. Efficient bypass of a thymine-thymine dimer by yeast DNA polymerase, Polη // Science. 1999. V. 283. P. 1001–1004. doi: 10.1126/science.283.5404.1001
  14. Prakash S., Johnson R.E., Prakash L. Eukaryotic translesion synthesis DNA polymerases: specificity of structure and function // Annu. Rev. Biochem. 2005. V. 74. P. 317–353. doi: 10.1146/annurev.biochem.74.082803.133250
  15. Wang Z., Xiao W. Distinct requirement for budding yeast Rev1 and Polη in translesion DNA synthesis across different types of DNA damage // Curr. Genet. 2020. V. 5. P. 1019–1028. doi: 10.1007/s00294-020-01092-w
  16. Kozmin S.G., Pavlov Y.I., Kunkel T.A., Sage E. Roles of Saccharomyces cerevisiae DNA polymerases Polη and Polζ in response to irradiation by simulated sunlight // Nucl. Acids Res. 2003. 2003. V. 31. P. 4541–4552. doi: 10.1093/nar/gkg489
  17. Sobolevska A., Halas A., Plachta M. et al. Regulation of the abudance of Y-family polymerases in the cell cycle of budding yeast in response to DNA damage // Curr. Genet. 2020. V. 66. P. 749–763. doi: 10.1007/s00294-020-01061-3
  18. Alekseeva E.A., Evstyukhina T.A., Peshekhonov V.T. et al. The Role of the RPD3 complex of Saccharomyces cerevisiae yeast in the activation of UV-induced expression of RNR complex genes // J. Biomed. Res. Environ. Sc. 2024. V. 5. P. 360–372. doi: 10.37871/jbres1902
  19. Alekseeva E.A., Evstyukhina T.A., Peshekhonov V.T., Korolev V.G. Participation of the HIM1 gene of yeast Saccharomyces cerevisiae in the error-free branch of post-replicative repair and role Polη in him1-dependent mutagenesis // Curr. Genet. 2021. V. 67. P. 141–151. doi: 10.1007/s00294-020-01115-6
  20. Zhao X., Chabes A., Domkin V. et al. The ribonucleotide reductase inhibitor Sml1 is a new target of the Mec1/Rad53 kinase cascade during growth and in response to DNA damage // EMBO J. 2001. V. 20. P. 3544–3553. doi: 10.1093/emboj/20.13.3544
  21. Chabes A., Georgieva B., Domkin V. et al. Survival of DNA damage in yeast directly depends on increased dNTP levels allowed by relaxed feedback inhibition of ribonucleotide reductase // Cell. 2003. V. 112. P. 391–401. doi: 10.1016/s0092-8674(03)00075-8
  22. Haracska L., Johnson R.E., Prakash L., Prakash S. Efficient and accurate replication in the presence of 7,8-dihidro-8-oxoguanine bt DNA polymerase eta // Nature genet. 2000. V. 25. P. 458–461. doi: 10.1038/78169
  23. Watanabe K., Tateishi S., Kawasuji M. et al. Rad18 guides poleta to replication stalling sites through physical interaction and PCNA monoubiquitination // EMBO J. 2004. V. 23. P. 3886–3896. doi: 10.1038/sj.emboj.7600383.
  24. Durando M., Tateishi S., Vaziri C. A non-catalytic role of DNA polymerase eta in recruiting Rad18 and promoting PCNA monoubiquitination at stalled replication forks // Nucl. Acids Res. 2013. V. 41. P. 3079–3093. doi: 10.1093/nar/gkt016
  25. Ripley B.M., Gildenberg M.S., Washington M.T. Control of DNA damage bypass by ubiquitylation of PCNA // Genes. 2020. V. 11. P. 138. doi.org/10.3390/genes11020138
  26. Fedorova I.V., Gracheva L.M., Kovaltzova S.V. et al. The yeast HSM3 gene acts in one of the mismatch repair pathways // Genetics. 1998. V. 148. P. 963–973. doi: 10.1093/genetics/148.3.963

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Sensitivity to UV light and the frequency of UV-induced mutagenesis at the CAN1 locus in the wild-type strain and the rad30Δ, pms1Δ and pms1Δ rad30Δ mutant strains treated with 7, 14 and 21 J/m² of UV radiation. The graphs show the standard errors of the mean (± SEM) obtained from five independent experiments.

Жүктеу (178KB)
3. Fig. 2. Sensitivity to UV light and the frequency of UV-induced mutagenesis at the CAN1 locus in the wild-type strain and the rad30Δ, him1Δ and him1Δ rad30Δ mutant strains when treated with doses of 7, 14 and 21 J/m² UV irradiation. The graphs show standard errors of the mean (± SEM) obtained from five independent experiments.

Жүктеу (189KB)
4. Fig. 3. Relative normalized expression of the RNR3 gene in the wild-type strain and the him1Δ and hif1Δ mutant strains before and after irradiation with ultraviolet light (after UV irradiation, the cells were kept for four hours at 30 °C in an induction thermostat); the UV dose was 14 J/m²; * p < 0.05, Student's t-test.

Жүктеу (108KB)
5. Fig. 4. Sensitivity to UV light and the frequency of UV-induced mutagenesis at the CAN1 locus in the wild-type strain and the rad30Δ, hsm3Δ, hif1Δ, hsm3Δ rad30Δ and hif1Δ rad30Δ mutant strains treated with 7, 14 and 21 J/m² of UV irradiation. The graphs show the standard errors of the mean (± SEM) obtained from five independent experiments.

Жүктеу (253KB)
6. Fig. 5. Sensitivity to UV light and the frequency of UV-induced mutagenesis at the CAN1 locus in the wild-type strain and the rad30Δ, sml1Δ, rad53 + HA-F, sml1Δ rad30Δ, and rad53 + HA-F rad30Δ mutant strains treated with 7, 14, and 21 J/m² of UV irradiation. The graphs show the standard errors of the mean (±SEM) obtained from five independent experiments.

Жүктеу (230KB)
7. Fig. 6. Sensitivity to UV light and the frequency of UV-induced mutagenesis at the CAN1 locus in the wild-type strain and the hat1Δ mutant strain when treated with doses of 7, 14 and 21 J/m² of UV irradiation. The graphs show standard errors of the mean (± SEM) obtained from five independent experiments.

Жүктеу (139KB)

© Russian Academy of Sciences, 2024