Роль изменений в структуре и динамике хроматина при covid-19

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Пандемия COVID-19 стала серьезным вызовом для систем здравоохранения и экономики многих государств, а понимание молекулярных механизмов патогенеза этого заболевания явилось значительным вызовом для современной науки. В то же время ученым впервые был доступен ряд высокоточных и высокопроизводительных методов анализа молекулярных процессов, включая технологии исследования изменений в хроматине на геномном уровне. В настоящем обзоре обсуждаются различные современные методы, которые применялись или могут быть применены для изучения изменений в структуре и динамике хроматина при инфицировании SARS-CoV-2, излагаются результаты имеющихся на данный момент исследований о роли этих изменений в патогенезе COVID-19 и в заключение рассматриваются известные на сегодняшний день молекулярные механизмы модуляции работы хроматина, возникающие при инфицировании SARS-CoV-2.

Полный текст

Доступ закрыт

Об авторах

А. Е. Бигильдеев

Национальный медицинский исследовательский центр гематологии

Автор, ответственный за переписку.
Email: shaytan_ak@mail.bio.msu.ru
Россия, Москва

В. И. Алексеев

Московский государственный университет им. М.В. Ломоносова, биологический факультет

Email: shaytan_ak@mail.bio.msu.ru
Россия, Москва

А. К. Грибкова

Московский государственный университет им. М.В. Ломоносова, биологический факультет

Email: shaytan_ak@mail.bio.msu.ru
Россия, Москва

Г. С. Тимохин

Высшая школа экономики, Международная лаборатория биоинформатики, факультет компьютерных наук

Email: shaytan_ak@mail.bio.msu.ru
Россия, Москва

Г. А. Комарова

Московский государственный университет им. М.В. Ломоносова, физический факультет

Email: shaytan_ak@mail.bio.msu.ru
Россия, Москва

А. К. Шайтан

Московский государственный университет им. М.В. Ломоносова, биологический факультет; Высшая школа экономики, Международная лаборатория биоинформатики, факультет компьютерных наук

Email: shaytan_ak@mail.bio.msu.ru
Россия, Москва; Москва

Список литературы

  1. WHO Coronavirus (COVID-19) dashboard [Electronic resource]. URL: https://covid19.who.int (accessed: 01.06.2023)
  2. Cases, data, and surveillance [Electronic resource] // Centers for Disease Control and Prevention. 2020. URL: https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/burden.html (accessed: 01.06.2023)
  3. Jackson C.B., Farzan M., Chen B. et al. Mechanisms of SARS-CoV-2 entry into cells // Nat. Rev. Mol. Cell Biol. 2022. V. 23. № 1. P. 3–20. https://doi.org/10.1038/s41580-021-00418-x
  4. Jamison D.A., Anand Narayanan S., Trovão N.S. et al. A comprehensive SARS-CoV-2 and COVID-19 review, Part 1: Intracellular overdrive for SARS-CoV-2 infection // Eur. J. Hum. Genet. 2022. V. 30. № 8. P. 889–898. https://doi.org/10.1038/s41431-022-01108-8
  5. Singh K.K., Chaubey G., Chen J.Y. et al. Decoding SARS-CoV-2 hijacking of host mitochondria in COVID-19 pathogenesis // Am. J. Physiol.-Cell Physiol. 2020. V.319. № 2. P. C258–C267. https://doi.org/10.1152/ajpcell.00224.2020
  6. Tsai K., Cullen B.R. Epigenetic and epitranscriptomic regulation of viral replication: 10 // Nat. Rev. Microbiol. Nature Publ. Group, 2020. V. 18. № 10. P. 559–570. https://doi.org/10.1038/s41579-020-0382-3
  7. Zhang Q., Cao X. Epigenetic regulation of the innate immune response to infection: 7 // Nat. Rev. Immunol. Nature Publ. Group, 2019. V. 19. № 7. P. 417–432. https://doi.org/10.1038/s41577-019-0151-6
  8. Chu H., Chan J.F.-W., Yuen T.T.-T. et al. Comparative tropism, replication kinetics, and cell damage profiling of SARS-CoV-2 and SARS-CoV with implications for clinical manifestations, transmissibility, and laboratory studies of COVID-19: An observational study // Lancet Microbe. 2020. V. 1. № 1. P. e14–e23. https://doi.org/10.1016/S2666-5247(20)30004-5
  9. Fogh J., Fogh J.M., Orfeo T. One hundred and twenty-seven cultured human tumor cell lines producing tumors in nude mice // J. Natl. Cancer Inst. 1977. V. 59. № 1. P. 221–226. https://doi.org/10.1093/jnci/59.1.221
  10. Coimbra L.D., Borin A., Fontoura M. et al. Identification of compounds with antiviral activity against SARS-CoV-2 in the MMV pathogen box using a phenotypic high-throughput screening assay // Front. Virol. 2022. V. 2: 854363.
  11. Arslan M., Xu B., Gamal El-Din M. Transmission of SARS-CoV-2 via fecal-oral and aerosols-borne routes: environmental dynamics and implications for wastewater management in underprivileged societies // Sci. Total Environ. 2020. V. 743. https://doi.org/10.1016/j.scitotenv.2020.140709
  12. Kipkorir V., Cheruiyot I., Ngure B. et al. Prolonged SARS-CoV-2 RNA detection in anal/rectal swabs and stool specimens in COVID-19 patients after negative conversion in nasopharyngeal RT-PCR test // J. Med. Virol. 2020. V. 92. № 11. P. 2328–2331. https://doi.org/10.1002/jmv.26007
  13. Zhang H., Kang Z., Gong H. et al. Digestive system is a potential route of COVID-19: An analysis of single-cell coexpression pattern of key proteins in viral entry process // Gut. 2020. V. 69. № 6. P. 1010–1018. https://doi.org/10.1136/gutjnl-2020-320953
  14. Cinatl J., Hoever G., Morgenstern B. et al. Infection of cultured intestinal epithelial cells with severe acute respiratory syndrome coronavirus // Cell. Mol. Life Sci. 2004. V. 61. № 16. P. 2100–2112. https://doi.org/10.1007/s00018-004-4222-9
  15. Bojkova D., Klann K., Koch B. et al. Proteomics of SARS-CoV-2-infected host cells reveals therapy targets // Nature. 2020. V. 583. № 7816. P. 469–472. https://doi.org/10.1038/s41586-020-2332-7
  16. Nakabayashi H., Taketa K., Miyano K. et al. Growth of human hepatoma cells lines with differentiated functions in chemically defined medium // Cancer Res. 1982. V. 42. № 9. P. 3858–3863
  17. Zhou F., Xia J., Yuan H.-X. et al. Liver injury in COVID-19: Known and unknown // World J. Clin. Cases. 2021. V. 9. № 19. P. 4980–4989. https://doi.org/10.12998/wjcc.v9.i19.4980
  18. Wanner N., Andrieux G., Badia-i-Mompel P. et al. Molecular consequences of SARS-CoV-2 liver tropism: 3 // Nat. Metab. Nature Publ. Group, 2022. V. 4. № 3. P. 310–319. https://doi.org/10.1038/s42255-022-00552-6
  19. Rio D.C., Clark S.G., Tjian R. A mammalian host-vector system that regulates expression and amplification of transfected genes by temperature induction // Science. 1985. V. 227. № 4682. P. 23–28. https://doi.org/10.1126/science.2981116
  20. DuBridge R.B., Tang P., Hsia H.C. et al. Analysis of mutation in human cells by using an Epstein-Barr virus shuttle system // Mol. Cell. Biol. 1987. V. 7. № 1. P. 379–387. https://doi.org/10.1128/mcb.7.1.379-387.1987
  21. Pear W.S., Nolan G.P., Scott M.L. et al. Production of high-titer helper-free retroviruses by transient transfection // Proc. Nat. Acad. Sci. U S A. 1993. V. 90. № 18. P. 8392–8396. https://doi.org/10.1073/pnas.90.18.8392
  22. Graham F.L., Smiley J., Russell W.C. et al. Characteristics of a human cell line transformed by DNA from human adenovirus type 5 // J. Gen. Virol. 1977. V. 36. № 1. P. 59–74. https://doi.org/10.1099/0022-1317-36-1-59
  23. Martin-Sancho L., Lewinski M.K., Pache L. et al. Functional landscape of SARS-CoV-2 cellular restriction // Mol. Cell. 2021. V. 81. № 12. P. 2656-2668.e8. https://doi.org/10.1016/j.molcel.2021.04.008
  24. Weston S., Coleman C.M., Haupt R. et al. Broad anti-coronavirus activity of Food and Drug Administration-approved drugs against SARS-CoV-2 in vitro and SARS-CoV in vivo // J. Virol. 2020. V. 94. № 21. https://doi.org/10.1128/JVI.01218-20
  25. Xie X., Muruato A.E., Zhang X. et al. A nanoluciferase SARS-CoV-2 for rapid neutralization testing and screening of anti-infective drugs for COVID-19 // Nat. Commun. 2020. V. 11. № 1. P. 5214. https://doi.org/10.1038/s41467-020-19055-7
  26. Lednicky J.A., Wyatt D.E., Lednicky J.A. et al. The art of animal cell culture for virus isolation // Biomedical Tissue Culture. IntechOpen, 2012. https://doi.org/10.5772/51215
  27. Blanco-Melo D., Nilsson-Payant B.E., Liu W.-C. et al. Imbalanced host response to SARS-CoV-2 drives development of COVID-19 // Cell. 2020. V. 181. № 5. P. 1036–1045.e9. https://doi.org/10.1016/j.cell.2020.04.026
  28. Gamage A.M., Tan K.S., Chan W.O.Y. et al. Infection of human Nasal Epithelial Cells with SARS-CoV-2 and a 382-nt deletion isolate lacking ORF8 reveals similar viral kinetics and host transcriptional profiles // PLoS Pathog. Publ. Library Science. 2020. V. 16. № 12. https://doi.org/10.1371/journal.ppat.1009130
  29. de Jong P.M., van Sterkenburg M.A., Kempenaar J.A. et al. Serial culturing of human bronchial epithelial cells derived from biopsies // In Vitro Cell. Dev. Biol. Anim. 1993. V. 29A. № 5. P. 379–387. https://doi.org/10.1007/BF02633985
  30. de Jong P.M., van Sterkenburg M.A., Hesseling S.C. et al. Ciliogenesis in human bronchial epithelial cells cultured at the air-liquid interface // Am. J. Respir. Cell Mol. Biol. 1994. V. 10. № 3. P. 271–277. https://doi.org/10.1165/ajrcmb.10.3.8117445
  31. Crystal R.G., Randell S.H., Engelhardt J.F. et al. Airway epithelial cells: Current concepts and challenges // Proc. Am. Thorac. Soc. 2008. V. 5. № 7. P. 772–777. https://doi.org/10.1513/pats.200805-041HR
  32. Jonsdottir H.R., Dijkman R. Coronaviruses and the human airway: A universal system for virus-host interaction studies // Virol. J. 2016. V. 13. № 1. P. 24. https://doi.org/10.1186/s12985-016-0479-5
  33. Fulcher M.L., Gabriel S., Burns K.A. et al. Well-differentiated human airway epithelial cell cultures // Methods Mol. Med. 2005. V. 107. P. 183–206. https://doi.org/10.1385/1-59259-861-7:183
  34. S Banach B., Orenstein J.M., Fox L.M. et al. Human airway epithelial cell culture to identify new respiratory viruses: coronavirus NL63 as a model // J. Virol. Methods. 2009. V. 156. № 1–2. P. 19–26. https://doi.org/10.1016/j.jviromet.2008.10.022
  35. de Araújo-Souza P.S., Hanschke S.C.H., Viola J.P.B. Epigenetic control of interferon-gamma expression in CD8 T cells // J. Immunol. Res. 2015. V. 2015. https://doi.org/10.1155/2015/849573
  36. Qian Z., Travanty E.A., Oko L. et al. Innate immune response of human alveolar type II cells infected with severe acute respiratory syndrome-coronavirus // Am. J. Respir. Cell Mol. Biol. 2013. V. 48. № 6. P. 742–748. https://doi.org/10.1165/rcmb.2012-0339OC
  37. Zhu N., Zhang D., Wang W. et al. A Novel Coronavirus from patients with pneumonia in China, 2019 // N. Engl. J. Med. 2020. V. 382. № 8. P. 727–733. https://doi.org/10.1056/NEJMoa2001017
  38. Lukassen S., Chua R.L., Trefzer T. et al. SARS-CoV-2 receptor ACE2 and TMPRSS2 are primarily expressed in bronchial transient secretory cells // EMBO J. 2020. V. 39. № 10. https://doi.org/10.15252/embj.20105114
  39. Do T.N.D., Donckers K., Vangeel L. et al. A robust SARS-CoV-2 replication model in primary human epithelial cells at the air liquid interface to assess antiviral agents // Antiviral Res. 2021. V. 192. https://doi.org/10.1016/j.antiviral.2021.105122
  40. Ryu G., Shin H.-W. SARS-CoV-2 infection of airway epithelial cells // Immune Netw. 2021. V. 21. № 1. https://doi.org/10.4110/in.2021.21.e3
  41. Kohli A., Sauerhering L., Fehling S.K. et al. Proteomic landscape of SARS-CoV-2- and MERS-CoV-infected primary human renal epithelial cells // Life Sci. Alliance. 2022. V. 5. № 5. https://doi.org/10.26508/lsa.202201371
  42. Eriksen A.Z., Møller R., Makovoz B. et al. SARS-CoV-2 infects human adult donor eyes and hESC-derived ocular epithelium // Cell Stem Cell. 2021. V. 28. № 7. P. 1205–1220.e7. https://doi.org/10.1016/j.stem.2021.04.028
  43. Szlachcic W.J., Dabrowska A., Milewska A. et al. SARS-CoV-2 infects an in vitro model of the human developing pancreas through endocytosis // iScience. 2022. V. 25. № 7. https://doi.org/10.1016/j.isci.2022.104594
  44. Ackermann M., Verleden S.E., Kuehnel M. et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19 // N. Engl. J. Med. 2020. V. 383. № 2. P. 120–128. https://doi.org/10.1056/NEJMoa2015432
  45. Fosse J.H., Haraldsen G., Falk K. et al. Endothelial cells in emerging viral infections // Front. Cardiovasc. Med. 2021. V. 8. https://doi.org/10.3389/fcvm.2021.619690
  46. Schimmel L., Chew K.Y., Stocks C.J. et al. Endothelial cells are not productively infected by SARS-CoV-2 // Clin. Transl. Immunol. 2021. V. 10. № 10. https://doi.org/10.1002/cti2.1350
  47. Ma-Lauer Y., Carbajo-Lozoya J., Hein M.Y. et al. p53 down-regulates SARS coronavirus replication and is targeted by the SARS-unique domain and PLpro via E3 ubiquitin ligase RCHY1 // Proc. Natl Acad. Sci. U S A, 2016. V. 113. № 35. P. E5192–E5201. https://doi.org/10.1073/pnas.1603435113
  48. McCauley H.A., Wells J.M. Pluripotent stem cell-derived organoids: Using principles of developmental biology to grow human tissues in a dish // Dev. Camb. Engl. 2017. V. 144. № 6. P. 958–962. https://doi.org/10.1242/dev.140731
  49. Duan X., Tang X., Nair M.S. et al. An airway organoid-based screen identifies a role for the HIF1α-glycolysis axis in SARS-CoV-2 infection // Cell Rep. 2021. V. 37. № 6. https://doi.org/10.1016/j.celrep.2021.109920
  50. Han Y., Duan X., Yang L. et al. Identification of SARS-CoV-2 inhibitors using lung and colonic organoids // Nature. 2021. V. 589. № 7841. P. 270–275. https://doi.org/10.1038/s41586-020-2901-9
  51. Jacob F., Pather S.R., Huang W.-K. et al. Human pluripotent stem cell-derived neural cells and brain organoids reveal SARS-CoV-2 neurotropism predominates in choroid plexus epithelium // Cell Stem Cell. 2020. V. 27. № 6. P. 937–950. https://doi.org/10.1016/j.stem.2020.09.016
  52. Pei R., Feng J., Zhang Y. et al. Host metabolism dysregulation and cell tropism identification in human airway and alveolar organoids upon SARS-CoV-2 infection // Protein Cell. 2021. V. 12. № 9. P. 717–733. https://doi.org/10.1007/s13238-020-00811-w
  53. Tang X., Xue D., Zhang T. et al. A multi-organoid platform identifies CIART as a key factor for SARS-CoV-2 infection // Nat. Cell Biol. 2023. V. 25. № 3. P. 381–389. https://doi.org/10.1038/s41556-023-01095-y
  54. Pontelli M.C., Castro Í.A., Martins R.B. et al. SARS-CoV-2 productively infects primary human immune system cells in vitro and in COVID-19 patients // J. Mol. Cell Biol. 2022. V. 14. № 4. https://doi.org/10.1093/jmcb/mjac021
  55. Shen X.-R., Geng R., Li Q. et al. ACE2-independent infection of T lymphocytes by SARS-CoV-2: 1 // Signal Transduct. Target. Ther. Nature Publ. Group, 2022. V. 7. № 1. P. 1–11. https://doi.org/10.1038/s41392-022-00919-x
  56. Trojanowicz B., Ulrich C., Kohler F. et al. Monocytic angiotensin-converting enzyme 2 relates to atherosclerosis in patients with chronic kidney disease // Nephrol. Dial. Transplant. 2017. V. 32. № 2. P. 287–298. https://doi.org/10.1093/ndt/gfw206
  57. Song X., Hu W., Yu H. et al. Little to no expression of angiotensin-converting enzyme-2 on most human peripheral blood immune cells but highly expressed on tissue macrophages // Cytom. Part J. Int. Soc. Anal. Cytol. 2023. V. 103. № 2. P. 136–145. https://doi.org/10.1002/cyto.a.24285
  58. Guha P., Das A., Dutta S. et al. A rapid and efficient DNA extraction protocol from fresh and frozen human blood samples // J. Clin. Lab. Anal. 2018. V. 32. № 1. https://doi.org/10.1002/jcla.22181
  59. Definition of immune cell – NCI Dictionary of cancer terms – NCI [Electronic resource]: nciAppModulePage. 2011. URL: https://www.cancer.gov/publications/dictionaries/cancer-terms/def/immune-cell (accessed: 01.06.2023)
  60. Schreier S., Triampo W. The Blood circulating rare cell population. What is it and what is it good for? // Cells. Multidisciplinary Digital Publ. Institute, 2020. V. 9, № 4. https://doi.org/10.3390/cells9040790
  61. Wright D.E., Wagers A.J., Gulati A.P. et al. Physiological migration of hematopoietic stem and progenitor cells // Science. 2001. V. 294. № 5548. P. 1933–1936. https://doi.org/10.1126/science.1064081
  62. Schreier S., Borwornpinyo S., Udomsangpetch R. et al. An update of circulating rare cell types in healthy adult peripheral blood: Findings of immature erythroid precursors // Ann. Transl. Med. 2018. V. 6. № 20. P. 406. https://doi.org/10.21037/atm.2018.10.04
  63. Levine R.F., Eldor A., Shoff P.K. et al. Circulating megakaryocytes: delivery of large numbers of intact, mature megakaryocytes to the lungs // Eur. J. Haematol. 1993. V. 51. № 4. P. 233–246. https://doi.org/10.1111/j.1600-0609.1993.tb00637.x
  64. Bethel K., Luttgen M.S., Damani S. et al. Fluid phase biopsy for detection and characterization of circulating endothelial cells in myocardial infarction // Phys. Biol. 2014. V. 11. № 1. https://doi.org/10.1088/1478-3975/11/1/016002
  65. Воробьев А.И., Бриллиант М.Д., Савченко В.Г. Острые лейкозы // Руководство по гематологии. В 3 томах. Т. 1. М.: ООО “Медико-технологическое предприятие “Ньюдиамед”, 2022. P. 175–241
  66. Suga H., Rennert R.C., Rodrigues M. et al. Tracking the elusive fibrocyte: Identification and characterization of collagen-producing hematopoietic lineage cells during murine wound healing // Stem Cells Dayt. Ohio. 2014. V. 32. № 5. P. 1347–1360. https://doi.org/10.1002/stem.1648
  67. Heukels P., van Hulst J. A. C., van Nimwegen M. et al. Fibrocytes are increased in lung and peripheral blood of patients with idiopathic pulmonary fibrosis // Respir. Res. 2018. V. 19. № 1. P. 90. https://doi.org/10.1186/s12931-018-0798-8
  68. Buenrostro J.D., Giresi P.G., Zaba L.C. et al. Transposition of native chromatin for multimodal regulatory analysis and personal epigenomics // Nat. Methods. 2013. V. 10. № 12. P. 1213–1218. https://doi.org/10.1038/nmeth.2688
  69. Sollberger G., Tilley D.O., Zychlinsky A. Neutrophil extracellular traps: the biology of chromatin externalization // Dev. Cell. 2018. V. 44. № 5. P. 542–553. https://doi.org/10.1016/j.devcel.2018.01.019
  70. Neubert E., Meyer D., Rocca F. et al. Chromatin swelling drives neutrophil extracellular trap release: 1 // Nat. Commun. Nature Publ. Group, 2018. V. 9. № 1. P. 3767. https://doi.org/10.1038/s41467-018-06263-5
  71. How do granulocytes affect my ATAC (standalone or multiome) data? [Electronic resource] // 10X Genomics. URL: https://kb.10xgenomics.com/hc/en-us/articles/360046631331-How-do-granulocytes-affect-my-ATAC-standalone-or-Multiome-data- (accessed: 31.05.2023)
  72. Dagur P.K., McCoy J.P. Collection, storage, and preparation of human blood cells // Curr. Protoc. Cytom. 2015. V. 73. P. 5.1.1–5.1.16. https://doi.org/10.1002/0471142956.cy0501s73
  73. Böyum A. Isolation of mononuclear cells and granulocytes from human blood. Isolation of monuclear cells by one centrifugation, and of granulocytes by combining centrifugation and sedimentation at 1 g // Scand. J. Clin. Lab. Investig. Suppl. 1968. V. 97. P. 77–89.
  74. Dainiak M.B., Kumar A., Galaev I.Yu. et al. Methods in cell separations // Cell separation: fundamentals, analytical and preparative methods / ed. Kumar A., Galaev I.Y., Mattiasson B. Berlin; Heidelberg: Springer, 2007. P. 1–18. https://doi.org/10.1007/10_2007_069
  75. Zaret K. Micrococcal nuclease analysis of chromatin structure // Curr. Protoc. Mol. Biol. 2005. Chapter 21. P. Unit 21.1. https://doi.org/10.1002/0471142727.mb2101s69
  76. Pajoro A., Muiño J.M., Angenent G.C. et al. Profiling nucleosome occupancy by MNase-seq: Experimental protocol and computational analysis // Methods Mol. Biol. 2018. V. 1675. P. 167–181. https://doi.org/10.1007/978-1-4939-7318-7_11
  77. Chung H.-R., Dunkel I., Heise F. et al. The effect of micrococcal nuclease digestion on nucleosome positioning data // PloS One. 2010. V. 5. № 12. https://doi.org/10.1371/journal.pone.0015754
  78. Boyle A.P., Davis S., Shulha H.P. et al. High-resolution mapping and characterization of open chromatin across the genome // Cell. 2008. V. 132. № 2. P. 311–322. https://doi.org/10.1016/j.cell.2007.12.014
  79. Levy A., Noll M. Chromatin fine structure of active and repressed genes // Nature. 1981. V. 289, № 5794. P. 198–203. https://doi.org/10.1038/289198a0
  80. Song L., Crawford G.E. DNase-seq: A high-resolution technique for mapping active gene regulatory elements across the genome from mammalian cells // Cold Spring HarbProtoc. 2010. № 1559-6095 (Electronic). P. pdb.prot5384. https://doi.org/10.1101/pdb.prot5384
  81. Goryshin I.Y., Reznikoff W.S. Tn5 in vitro transposition // J. Biol. Chem. 1998. V. 273. № 13. P. 7367–7374. https://doi.org/10.1074/jbc.273.13.7367
  82. Adey A., Morrison H.G., Asan et al.Rapid, low-input, low-bias construction of shotgun fragment libraries by high-density in vitro transposition // Genome Biol. 2010. V. 11. № 12. P. R119. https://doi.org/10.1186/gb-2010-11-12-r119
  83. Giroux N.S., Ding S., McClain M.T. et al. Differential chromatin accessibility in peripheral blood mononuclear cells underlies COVID-19 disease severity prior to seroconversion: 1 // Sci. Rep. Nature Publ. Group, 2022. V. 12. № 1. https://doi.org/10.1038/s41598-022-15668-8
  84. Simon J.M., Giresi P.G., Davis I.J. et al. Using formaldehyde-assisted isolation of regulatory elements (FAIRE) to isolate active regulatory DNA // Nat. Protoc. 2012. V. 7. № 2. P. 256–267. https://doi.org/10.1038/nprot.2011.444
  85. Luger K., Mäder A.W., Richmond R.K. et al. Crystal structure of the nucleosome core particle at 2.8 A resolution // Nature. 1997. V. 389. № 6648. P. 251–260. https://doi.org/10.1038/38444
  86. Bulyk M.L. Integrative functional genomics // Genome Biol. 2004. V. 5. № 7. https://doi.org/10.1186/gb-2004-5-7-331
  87. Garvie C.W., Wolberger C. Recognition of specific DNA sequences // Mol. Cell. 2001. V. 8. № 5. P. 937–946. https://doi.org/10.1016/s1097-2765(01)00392-6
  88. Brutlag D., Schlehuber C., Bonner J. Properties of formaldehyde-treated nucleohistone // Biochemistry. 1969. V. 8. № 8. P. 3214–3218. https://doi.org/10.1021/bi00836a013
  89. Solomon M.J., Varshavsky A. Formaldehyde-mediated DNA-protein crosslinking: A probe for in vivo chromatin structures. // Proc. Natl. Acad. Sci. U S A. 1985. V. 82. № 19. P. 6470–6474. https://doi.org/10.1073/pnas.82.19.6470
  90. Daly M.M., Mirsky A.E., Ris H. The amino acid composition and some properties of histones // J. Gen. Physiol. 1951. V. 34. № 4. P. 439–450. https://doi.org/10.1085/jgp.34.4.439
  91. Giresi P.G., Lieb J.D. Isolation of active regulatory elements from eukaryotic chromatin using FAIRE (Formaldehyde Assisted Isolation of Regulatory Elements) // Methods. 2009. V. 48. № 3. P. 233–239. https://doi.org/10.1016/j.ymeth.2009.03.003
  92. Ren B., Robert F., Wyrick J.J. et al. Genome-wide location and function of DNA binding proteins // Science. 2000. V. 290. № 5500. P. 2306–2309. https://doi.org/10.1126/science.290.5500.2306
  93. Iyer V.R., Horak C.E., Scafe C.S. et al. Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF // Nature. 2001. V. 409. № 6819. P. 533–538. https://doi.org/10.1038/35054095
  94. Kim T.H., Dekker J. ChIP-quantitative Polymerase Chain Reaction (ChIP-qPCR) // Cold Spring Harb. Protoc. 2018. V. 2018. № 5. https://doi.org/10.1101/pdb.prot082628
  95. Barski A., Cuddapah S., Cui K. et al. High-resolution profiling of histone methylations in the human genome // Cell. 2007. V. 129. № 4. P. 823–837. https://doi.org/10.1016/j.cell.2007.05.009
  96. Johnson D.S., Mortazavi A., Myers R.M. et al. Genome-wide mapping of in vivo protein-DNA interactions // Science. 2007. V. 316. № 5830. P. 1497–1502. https://doi.org/10.1126/science.1141319
  97. Robertson G., Hirst M., Bainbridge M. et al. Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing // Nat. Methods. 2007. V. 4. № 8. P. 651–657. https://doi.org/10.1038/nmeth1068
  98. Landt S.G., Marinov G.K., Kundaje A. et al. ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia // Genome Res. 2012. V. 22. № 9. P. 1813–1831. https://doi.org/10.1101/gr.136184.111
  99. Wells J., Farnham P.J. Characterizing transcription factor binding sites using formaldehyde crosslinking and immunoprecipitation // Methods. 2002. V. 26. № 1. P. 48–56. https://doi.org/10.1016/S1046-2023(02)00007-5
  100. Bauer U.-M., Daujat S., Nielsen S.J. et al. Methylation at arginine 17 of histone H3 is linked to gene activation // EMBO Rep. 2002. V. 3. № 1. P. 39–44. https://doi.org/10.1093/embo-reports/kvf013
  101. Gilmour D.S., Lis J.T. In vivo interactions of RNA polymerase II with genes of Drosophila melanogaster // Mol. Cell. Biol. Taylor & Francis, 1985. V. 5. № 8. P. 2009–2018. https://doi.org/10.1128/mcb.5.8.2009-2018.1985
  102. Skene P.J., Henikoff S. An efficient targeted nuclease strategy for high-resolution mapping of DNA binding sites // eLife. 2017. V. 6. https://doi.org/10.7554/eLife.21856
  103. Kaya-Okur H.S., Wu S.J., Codomo C.A. et al. CUT&Tag for efficient epigenomic profiling of small samples and single cells: 1 // Nat. Commun. Nature Publ. Group. 2019. V. 10. № 1. P. 1930. https://doi.org/10.1038/s41467-019-09982-5
  104. Skene P.J., Henikoff J.G., Henikoff S. Targeted in situ genome-wide profiling with high efficiency for low cell numbers: 5 // Nat. Protoc. Nature Publ. Group. 2018. V. 13. № 5. P. 1006–1019. https://doi.org/10.1038/nprot.2018.015
  105. Hainer S.J., Bošković A., McCannell K.N. et al. Profiling of pluripotency factors in single cells and early embryos // Cell. 2019. V. 177. № 5. P. 1319–1329.e11. https://doi.org/10.1016/j.cell.2019.03.014
  106. Kaya-Okur H.S., Janssens D.H., Henikoff J.G. et al. Efficient low-cost chromatin profiling with CUT&Tag // Nat. Protoc. 2020. V. 15. № 10. P. 3264–3283. https://doi.org/10.1038/s41596-020-0373-x
  107. Ramani V., Shendure J., Duan Z. Understanding spatial genome organization: Methods and Insights // Genomics Proteomics Bioinformatics. 2016. V. 14. № 1. P. 7–20. https://doi.org/10.1016/j.gpb.2016.01.002
  108. Dekker J., Rippe K., Dekker M. et al. Capturing chromosome conformation // Science. 2002. V. 295. № 5558. P. 1306–1311. https://doi.org/10.1126/science.1067799
  109. Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture–on-chip (4C) | Nature Genetics [Electronic resource]. 2006. https://www.nature.com/articles/ng1896
  110. Dostie J., Richmond T.A., Arnaout R.A. et al. Chromosome Conformation Capture Carbon Copy (5C): A massively parallel solution for mapping interactions between genomic elements // Genome Res. 2006. V. 16. № 10. P. 1299–1309. https://doi.org/10.1101/gr.5571506
  111. Lieberman-Aiden E., van Berkum N.L., Williams L. et al. Comprehensive mapping of long range interactions reveals folding principles of the human genome // Science. 2009. V. 326. № 5950. P. 289–293. https://doi.org/10.1126/science.1181369
  112. Forcato M., Nicoletti C., Pal K. et al. Comparison of computational methods for Hi-C data analysis // Nat. Methods. 2017. V. 14. № 7. P. 679–685. https://doi.org/10.1038/nmeth.4325
  113. Lajoie B.R., Dekker J., Kaplan N. The Hitchhiker’s guide to Hi-C analysis: Practical guidelines // Methods. 2015. V. 72. P. 65–75. https://doi.org/10.1016/j.ymeth.2014.10.031
  114. Pal K., Forcato M., Ferrari F. Hi-C analysis: From data generation to integration // Biophys. Rev. 2019. V. 11. № 1. P. 67–78. https://doi.org/10.1007/s12551-018-0489-1
  115. Sanborn A.L., Rao S.S.P., Huang S.-C. et al. Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes // Proc. Natl. Acad. Sci. U S A. 2015. V. 112. № 47. P. E6456–6465. https://doi.org/10.1073/pnas.1518552112
  116. Ulianov S.V., Khrameeva E.E., Gavrilov A.A. et al. Active chromatin and transcription play a key role in chromosome partitioning into topologically associating domains // Genome Res. 2016. V. 26. № 1. P. 70–84. https://doi.org/10.1101/gr.196006.115
  117. Sexton T., Yaffe E., Kenigsberg E. et al. Three-dimensional folding and functional organization principles of the Drosophila genome // Cell. 2012. V. 148. № 3. P. 458–472. https://doi.org/10.1016/j.cell.2012.01.010
  118. Rao S.S.P., Huntley M.H., Durand N.C. et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping // Cell. 2014. V. 159. № 7. P. 1665–1680. https://doi.org/10.1016/j.cell.2014.11.021
  119. Ramani V., Cusanovich D.A., Hause R.J. et al. Mapping 3D genome architecture through in situ DNase Hi-C // Nat. Protoc. 2016. V. 11. № 11. P. 2104–2121. https://doi.org/10.1038/nprot.2016.126
  120. Hsieh T.-H.S., Weiner A., Lajoie B. et al. Mapping nucleosome resolution chromosome folding in yeast by Micro-C // Cell. 2015. V. 162. № 1. P. 108–119. https://doi.org/10.1016/j.cell.2015.05.048
  121. Krietenstein N., Rando O.J. Mammalian micro-C-XL // Methods Mol. Biol. 2022. V. 2458. P. 321–332. https://doi.org/10.1007/978-1-0716-2140-0_17
  122. Hsieh T.-H.S., Cattoglio C., Slobodyanyuk E. et al. Resolving the 3D landscape of transcription-linked mammalian chromatin folding // Mol. Cell. 2020. V. 78. № 3. P. 539-553. https://doi.org/10.1016/j.molcel.2020.03.002
  123. Bonev B., Cohen N.M., Szabo Q. et al. Multiscale 3D genome rewiring during mouse neural development // Cell. 2017. V. 171. № 3. P. 557-572. https://doi.org/10.1016/j.cell.2017.09.043
  124. Lando D., Stevens T.J., Basu S. et al. Calculation of 3D genome structures for comparison of chromosome conformation capture experiments with microscopy: An evaluation of single-cell Hi-C protocols // Nucleus. 2018. V. 9. № 1. P. 190–201. https://doi.org/10.1080/19491034.2018.1438799
  125. Ma X., Ezer D., Adryan B. et al. Canonical and single-cell Hi-C reveal distinct chromatin interaction sub-networks of mammalian transcription factors // Genome Biol. 2018. V. 19. https://doi.org/10.1186/s13059-018-1558-2
  126. Liao M., Liu Y., Yuan J. et al. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19 // Nat. Med. 2020. V. 26. № 6. P. 842–844. https://doi.org/10.1038/s41591-020-0901-9
  127. Vabret N., Britton G.J., Gruber C. et al. Immunology of COVID-19: Current state of the science // Immunity. 2020. V. 52. № 6. P. 910–941. https://doi.org/10.1016/j.immuni.2020.05.002
  128. Li S., Wu B., Ling Y. et al. Epigenetic landscapes of single-cell chromatin accessibility and transcriptomic immune profiles of T Cells in COVID-19 patients // Front. Immunol. 2021. V. 12.
  129. You M., Chen L., Zhang D. et al. Single-cell epigenomic landscape of peripheral immune cells reveals establishment of trained immunity in individuals convalescing from COVID-19: 6 // Nat. Cell Biol. Nature Publ. Group. 2021. V. 23. № 6. P. 620–630. https://doi.org/10.1038/s41556-021-00690-1
  130. Zheng Y., Liu X., Le W. et al. A human circulating immune cell landscape in aging and COVID-19 // Protein Cell. 2020. V. 11. № 10. P. 740–770. https://doi.org/10.1007/s13238-020-00762-2
  131. Yadav A.K., Ghosh S., Kotwal A. et al. Seroconversion among COVID-19 patients admitted in a dedicated COVID hospital: A longitudinal prospective study of 1000 patients // Med. J. Armed Forces India. 2021. V. 77. № Suppl 2. P. S379–S384. https://doi.org/10.1016/j.mjafi.2021.06.007
  132. Huang C., Wang Y., Li X. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China // The Lancet. Elsevier. 2020. V. 395. № 10223. P. 497–506. https://doi.org/10.1016/S0140-6736(20)30183-5
  133. Hu L., Yu Y., Huang H. et al. Epigenetic regulation of interleukin 6 by histone acetylation in macrophages and its role in paraquat-induced pulmonary fibrosis // Front. Immunol. 2017. V. 7. https://doi.org/10.3389/fimmu.2016.00696
  134. Russ B.E., Olshanksy M., Smallwood H.S. et al. Mapping histone methylation dynamics during virus-specific CD8+ T cell differentiation in response to infection // Immunity. 2014. V. 41. № 5. P. 853–865. https://doi.org/10.1016/j.immuni.2014.11.001
  135. Yang X., Rutkovsky A.C., Zhou J. et al. Characterization of altered gene expression and histone methylation in peripheral blood mononuclear cells regulating inflammation in COVID-19 patients // J. Immunol. 2022. V. 208. № 8. P. 1968–1977. https://doi.org/10.4049/jimmunol.2101099
  136. Tang H., Gao Y., Li Z. et al.The noncoding and coding transcriptional landscape of the peripheral immune response in patients with COVID-19 // Clin. Transl. Med. 2020. V. 10. № 6. P. e200. https://doi.org/10.1002/ctm2.200
  137. Zhang S., Amahong K., Sun X. et al. The miRNA: A small but powerful RNA for COVID-19 // Brief. Bioinform. 2021. V. 22. № 2. P. 1137–1149. https://doi.org/10.1093/bib/bbab062
  138. Hou H., Li Y., Zhang P. et al. Smoking is independently associated with an increased risk for COVID-19 mortality: A systematic review and meta-analysis based on adjusted effect estimates // Nicotine Tob. Res. 2021. V. 23. № 11. P. 1947–1951. https://doi.org/10.1093/ntr/ntab112
  139. Zhang Q., Thakur C., Fu Y. et al. Mdig promotes oncogenic gene expression through antagonizing repressive histone methylation markers // Theranostics. Ivyspring Intern. Publ. 2020. V. 10. № 2. P. 602–614. https://doi.org/10.7150/thno.36220
  140. Shi J., Thakur C., Zhao Y. et al. Pathological and prognostic indications of the mdiggene in human Lung Cancer // Cell. Physiol. Biochem. 2021. V. 55. № S2. P. 13–28
  141. Zhang Q., Wadgaonkar P., Xu L. et al. Environmentally-inducedmdig contributes to the severity of COVID-19 through fostering expression of SARS-CoV-2 receptor NRPs and glycan metabolism // Theranostics. Ivyspring Intern. Publ. 2021. V. 11. № 16. P. 7970–7983. https://doi.org/10.7150/thno.62138
  142. Watanabe Y., Allen J.D., Wrapp D. et al. Site-specific glycan analysis of the SARS-CoV-2 spike // Science. 2020. V. 369. № 6501. P. 330–333. https://doi.org/10.1126/science.abb9983
  143. Dekker J., Marti-Renom M.A., Mirny L.A. Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data // Nat. Rev. Genet. 2013. V. 14. № 6. P. 390–403. https://doi.org/10.1038/nrg3454
  144. Wang R., Lee J.-H., Kim J. et al. SARS-CoV-2 restructures host chromatin architecture: 4 // Nat. Microbiol. Nature Publ. Group. 2023. V. 8. № 4. P. 679–694. https://doi.org/10.1038/s41564-023-01344-8
  145. Carvalho T., Krammer F., Iwasaki A. The first 12 months of COVID-19: A timeline of immunological insights: 4 // Nat. Rev. Immunol. Nature Publ. Group. 2021. V. 21. № 4. P. 245–256. https://doi.org/10.1038/s41577-021-00522-1
  146. Tan Z.W., Toong P.J., Guarnera E. et al. Disrupted chromatin architecture in olfactory sensory neurons: Looking for the link from COVID-19 infection to anosmia: 1 // Sci. Rep. Nature Publ. Group. 2023. V. 13. № 1. P. 5906. https://doi.org/10.1038/s41598-023-32896-8
  147. Kee J., Thudium S., Renner D.M. et al. SARS-CoV-2 disrupts host epigenetic regulation via histone mimicry: 7931 // Nature. Nature Publ. Group. 2022. V. 610. № 7931. P. 381–388. https://doi.org/10.1038/s41586-022-05282-z
  148. Song L., Wang D., Abbas G. et al. The main protease of SARS-CoV-2 cleaves histone deacetylases and DCP1A, attenuating the immune defense of the interferon-stimulated genes // J. Biol. Chem. Elsevier. 2023. V. 299. № 3. https://doi.org/10.1016/j.jbc.2023.102990
  149. Marston J.L., Greenig M., Singh M. et al. SARS-CoV-2 infection mediates differential expression of human endogenous retroviruses and long interspersed nuclear elements // JCI Insight. 2021. V. 6. № 24. https://doi.org/10.1172/jci.insight.147170
  150. Wang A., Chiou J., Poirion O.B. et al. Single-cell multiomic profiling of human lungs reveals cell-type-specific and age-dynamic control of SARS-CoV2 host genes // eLife. 2020. V. 9. https://doi.org/10.7554/eLife.62522
  151. Wei J., Patil A., Collings C.K. et al. Pharmacological disruption of mSWI/SNF complex activity restricts SARS-CoV-2 infection: 3 // Nat. Genet. Nature Publ. Group. 2023. V. 55. № 3. P. 471–483. https://doi.org/10.1038/s41588-023-01307-z
  152. Van Der Made C.I., Simons A., Schuurs-Hoeijmakers J. et al. Presence of geneticvariants among young men with severe COVID-19 // JAMA. 2020. V. 324. P. 663. https://doi.org/10.1001/jama.2020.13719
  153. Conceição-Silva F., Reis C.S.M., De Luca P.M. et al. The immune system throws its traps: Cells and their extracellular traps in disease and protection: 8 // Cells. Multidisciplinary Digital Publ. Institute. 2021. V. 10. № 8. https://doi.org/10.3390/cells10081891
  154. Radermecker C., Detrembleur N., Guiot J. et al. Neutrophil extracellular traps infiltrate the lung airway, interstitial, and vascular compartments in severe COVID-19 // J. Exp. Med. 2020. V. 217. № 12. https://doi.org/10.1084/jem.20201012
  155. Middleton E.A., He X.-Y., Denorme F. et al. Neutrophil extracellular traps contribute to immunothrombosis in COVID-19 acute respiratory distress syndrome // Blood. 2020. V. 136. № 10. P. 1169–1179. https://doi.org/10.1182/blood.2020007008
  156. Zuo Y., Yalavarthi S., Shi H. et al. Neutrophil extracellular traps in COVID-19 // JCI Insight. 2020. V. 5. № 11. https://doi.org/10.1172/jci.insight.138999
  157. Ligi D., Giglio R.V., Henry B.M. et al. What is the impact of circulating histones in COVID-19: a systematic review // Clin. Chem. Lab. Med. CCLM. 2022. V. 60. № 10. P. 1506–1517. https://doi.org/10.1515/cclm-2022-0574
  158. Hong W., Yang J., Zou J. et al. Histones released by NETosis enhance the infectivity of SARS-CoV-2 by bridging the spike protein subunit 2 and sialic acid on host cells: 5 // Cell. Mol. Immunol. Nature Publ. Group. 2022. V. 19. № 5. P. 577–587. https://doi.org/10.1038/s41423-022-00845-6
  159. Leppkes M., Knopf J., Naschberger E. et al. Vascular occlusion by neutrophil extracellular traps in COVID-19. // EBioMedicine, 2020. V. 58. https://doi.org/10.1016/j.ebiom.2020.102925

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Структура и динамика хроматина при СOVID-19: объекты исследования, виды изменений и их эффекты. Создано c использованием BioRender.com.


© Российская академия наук, 2024