Synthesis and crystal strucrure of Bis-(2,6-diaminopyridine) tetrachlorid zinc(II)

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

In the presented work, the synthesis of a complex resulting from the reaction of 2,6-diaminopyridine with the Zn(II) ion in an alcohol solution of hydrochloric acid is described for the first time. The composition, molecular and crystal structure of the synthesized complex were determined by X-ray structural analysis. The structure of the new complex, its crystallographic data, and the geometry of hydrogen bonds in the crystal system were determined. The composition of the metal complex was confirmed by elemental analysis, and the existing chemical bonds were studied by IR spectroscopy. The surface of the crystals was studied according to Hirschfeld. To determine the stability of the obtained complex, its thermal analysis was carried out. The stability of the complex, caused by intramolecular hydrogen bonds, was confirmed.

Texto integral

Acesso é fechado

Sobre autores

Y. Nazarov

Termez State University

Email: kornilovkn@mgupp.ru
Uzbequistão, Termez

X. Turaev

Termez State University

Email: kornilovkn@mgupp.ru
Uzbequistão, Termez

J. Ashurov

Institute of Bioorganic Chemistry of the Academy of Sciences of the Republic of Uzbekistan

Email: kornilovkn@mgupp.ru
Uzbequistão, Tashkent

Sh. Kasimov

Termez State University

Email: kornilovkn@mgupp.ru
Uzbequistão, Termez

J. Suyunov

Termez State University

Email: kornilovkn@mgupp.ru
Uzbequistão, Termez

N. Ermuratova

Termez Engineering and Technology Institute

Email: kornilovkn@mgupp.ru
Uzbequistão, Termez

K. Kornilov

Russian Biotechnological University

Autor responsável pela correspondência
Email: kornilovkn@mgupp.ru
Rússia, Moscow

Bibliografia

  1. Liu S.H., Chen J.-D., Liou L.-S., Wang J.-C. // Inorg. Chem. 2001. V. 40. № 25. P. 6499. https://doi.org/10.1021/ic010529c
  2. Moussa O.B., Chebbi H., Zid M.F. // J. Molec. Struct. 2019. V. 1180. P. 72. https://doi.org/10.1016/j.molstruc.2018.11.077
  3. Andreini C., Bertini I. // J. Inorg. Biochem. 2012. V. 111. P. 150. https://doi.org/10.1016/j.jinorgbio.2011.11.020
  4. Balan A.M., Ashoki R.F.N., Vasanthi M. et al. // Int. J. Life Sci. Pharm. Res. 2013. V. 3. № 2. P. 67. https://www.ijlpr.com/index.php/journal/article/view/376/278
  5. Crea F., De Stefano C., Milea D., Sammartano S. // J. Solution Chem. 2009. V. 38. P. 115. https://link.springer.com/article/10.1007/s10953-008-9357-0
  6. Cigala R.M., Crea F., De Stefano С. et al. // J. Mol. Liq. 2012. V. 165. P. 143. https://doi.org/10.1016/j.molliq.2011.11.002
  7. Cigala R.M., Crea F., De Stefano C. et al. // Monatch. Chem. 2015. V. 146. P. 527. https://doi.org/10.1007/s00706-014-1394-3
  8. Umirova G.A., Turaev Kh.Kh., Alimnazarov B.Kh. et al. // Acta Cryst. E. 2023. V. 79. № 9. P. 856. https://doi.org/10.1107/S2056989023007466
  9. Suyunov J.R., Turaev Kh.Kh., Alimnazarov B.Kh. et al. // IUCrData. 2023. V. 8. № 12. P. x231032. https://doi.org/10.1107/S2414314623010325
  10. Shoukry A.A., Al-Mhayawi S.R. // Eur. J. Chem. 2013. № 4. Р. 260. https://doi.org/10.5155/eurjchem.4.3.260-267.800
  11. Hall V.M., Bertke J.A., Swift J.A. // Acta Cryst. С. 2017. V. 73. № 11. P. 990. https://doi.org/10.1107/S2053229617014978
  12. Sakong C. // Dyes and Pigments. 2011. V. 88. № 2. P. 166. https://doi.org/10.1016/j.dyepig.2010.06.003
  13. Coelho P.J. // Dyes and Pigments. 2012. V. 92. № 1. P. 745. https://doi.org/10.1016/j.dyepig.2011.06.019
  14. Groom C.R. // Acta Cryst. B. 2016. V. 72. № 2. P. 171. https://doi.org/10.1107/S2052520616003954
  15. Raposo M.M. // Tetrahedron. 2011. V. 67. № 29. P. 5189. https://doi.org/10.1016/j.tet.2011.05.053
  16. Khanmohammadi H. // Dyes and Pigments. 2013. V. 98. № 3. P. 557. https://doi.org/10.1016/j.dyepig.2013.03.023
  17. Mahmoud W.H., Sayed F.N., Mohamed G.G. // Appl. Organometall. Chem. 2016. V. 30. № 11. P. 959. https://doi.org/10.1002/aoc.3529
  18. Merino E. // Chem. Soc. Rev. 2011. V. 40. № 7. P. 3835. https://doi.org/10.1039/C0CS00183J
  19. Rigaku Oxford Diffraction, CrysAlisPro Software System, Version 1.171.40.84a. 2020. Rigaku Corporation, Oxford, UK
  20. Sheldrick G.M. // Acta Cryst. А. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053273314026370
  21. Sheldrick G.M. // Acta Cryst. C. 2015. V. 71. P. 3. https://dx.doi.org/10.1107/S2053229614024218
  22. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Cryst. 2009. V. 42. P. 339. https://dx.doi.org/10.1107/S0021889808042726
  23. Nazarov Y.E., Turaev Kh.Kh., Alimnazarov B.Kh. et al. // IUCrData. 2024. V. 9. № 6. Р. x240570. https://doi.org/10.1107/S2414314624005704
  24. Ben Moussa O., Chebbi H., Zid M.F. // Acta Cryst. E. 2018. V. 74. № 4. P. 436. https://doi.org/10.1107/S2056989018003171
  25. Suyunov J.R., Turaev Kh.Kh., Alimnazarov B.Kh. et al. // Acta Cryst. E. 2023. V. 79. P. 1083. https://doi.org/10.1107/S2056989023009350
  26. Mghandef M., Boughzala H. // Acta Cryst. E. 2015. V. 71. № 5. P. 555. https://doi.org/10.1107/S2056989015007707
  27. Nasr M.B., Soudani S., Lefebvre F. et al. // J. Mol. Struct. 2017. V. 138. P. 71. https://doi.org/10.1016/j.molstruc.2017.02.098
  28. Spackman P.R., Byrom P.J. // Chem. Phys. Lett. 1997. V. 267. № 3–4. Р. 215. https://doi.org/10.1016/S0009-2614(97)00100-0

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Structure of the complex compound [ZnCl4]2–(2,6-DAPY-Н+)2.

Baixar (82KB)
3. Fig. 2. Complex [ZnCl4]2–(2,6-DAPY-Н+)2: a – π–π interactions on the three-dimensional Hirschfeld surface mapped by di/de; b – π–π interactions in the pyridine rings.

Baixar (191KB)
4. Fig. 3. Three-dimensional Hirschfeld surface in the (C5H8N3)2[ZnCl4] complex and two-dimensional fingerprint region mapped by dnorm representing the H Cl/Cl H interactions of cations and anions in it: a – neutral molecule, b – cation, c – anion.

Baixar (440KB)
5. Fig. 4. Two-dimensional fingerprint region of the complex compound (C5H8N3)2[ZnCl4], describing the fractions of atoms participating in intermolecular interactions and the contributions of pairs of atoms.

Baixar (566KB)
6. Fig. 5. IR spectrum of the metal complex (C5H8N3)2[ZnCl4].

Baixar (197KB)
7. Fig. 6. Thermal analysis of the complex compound C10H16N6ZnCl4: 1 – thermogravimetric curve (TGA), 2 – differential thermal analysis (DTA) curve.

Baixar (172KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025