Development of a submit candidate vaccine for the prevention of Dengue fever using immunoinformaics methods

Capa

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The prediction of epitopes was carried out. The structural stability of the candidate vaccine was studied by the molecular dynamics method using the Gromacs-2023 software package. The results showed the preservation of the structural stability of all the studied subdomains. The final stage was the simulation of the cellular immune response using the C-IMMSIMM program. The results predict the ability of candidate vaccines to elicit both a vibrant primary and persistent secondary immune response.

Texto integral

Acesso é fechado

Sobre autores

A. Tulenev

National Research Center “Kurchatov Institute”

Autor responsável pela correspondência
Email: tiulenev.aa@phystech.edu
Rússia, Moscow

V. Timofeev

National Research Center “Kurchatov Institute”

Email: tiulenev.aa@phystech.edu
Rússia, Moscow

A. Cherniavsky

National Research Center “Kurchatov Institute”

Email: tiulenev.aa@phystech.edu
Rússia, Moscow

A. Ivanovsky

National Research Center “Kurchatov Institute”

Email: tiulenev.aa@phystech.edu
Rússia, Moscow

Y. Kordonskaya

National Research Center “Kurchatov Institute”

Email: tiulenev.aa@phystech.edu
Rússia, Moscow

Y. Pisarevsky

National Research Center “Kurchatov Institute”

Email: tiulenev.aa@phystech.edu
Rússia, Moscow

Y. Dyakova

National Research Center “Kurchatov Institute”

Email: tiulenev.aa@phystech.edu
Rússia, Moscow

Bibliografia

  1. Некоммерческое партнерство “Национальное научное общество инфекционистов”. Клинические рекомендации Лихорадка денге у взрослых. http://nnoi.ru/uploads/files/protokoly/Lih_Denge_adult.pdf
  2. World Health Organization. “Dengue and severe dengue”. https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue
  3. Keelapang P., Sriburi R. // J. Virol. 2004. V. 78. P. 2367. https://pubmed.ncbi.nlm.nih.gov/17067286/
  4. Роспотребнадзор. Памятка: “Лихорадка Денге. Что это такое?”. https://71.rospotrebnadzor.ru/content/596/85820/
  5. Роспотребнадзор. О ситуации с лихорадкой Денге в мире. http://rospotrebnadzor.ru/about/info/news/news_details.php?ELEMENT_ID=10432&sphrase_id=1490042
  6. Хохлова Н.И., Краснова Е.И., Позднякова Л.Л. // Журнал инфектологии. 2015. Т. 7. № 1. С. 65. https://doi.org/10.22625/2072-6732-2015-7-1-65-69
  7. Сайфуллин М.А., Келли Е.И., Базарова М.В. и др. // Эпидемиология и инфекционные болезни. 2015. Т. 20. № 2. С. 49.
  8. Abass O.A., Timofeev V.I., Sarkar B. et al. // J. Biomol. Struct. Dyn. 2022. V. 40. № 16. P. 7283. https://doi.org/10.1080/07391102.2021.1896387
  9. Adekunle B.R., Angus N.O., Mercy T.A. et al. // Veterinary Vaccine. 2023. V. 2. № 1. P. 2772. https://doi.org/10.1016/j.vetvac.2023.100013
  10. Rakitina T.V., Smirnova E.V., Podshivalov D.D. et al. // Crystals. 2023. V. 13. P. 1416. https://doi.org/10.3390/cryst13101416
  11. UniProtKB. A0A6B7HXR6. https://www.uniprot.org/uniprotkb
  12. Altschul S.F., Gish W., Miller W. et al. // J. Mol. Biol. 1990. V. 215. № 3. P. 403. https://linkinghub.elsevier.com/retrieve/pii/S0022283605803602
  13. Jeppe H., Trigos K.D., Pedersen M.D. et al. // ВioRxiv. 2022. P. 487609. https://doi.org/10.1101/2022.04.08.487609
  14. Jumper J., Evans R., Pritzel A. et al. // Nature. 2021. V. 596. P. 583. https://doi.org/10.1038/s41586-021-03819-2
  15. DeLano W.L. // The PyMOL Molecular Graphics System, Version 1.8; Schrödinger. New York: LLC, 2015. https://pymol.org/
  16. Larsen M.V., Lundegaard C., Lamberth K. et al. // BMC Bioinformatics. 2007. V. 8. P. 424. https://doi.org/10.1186/1471-2105-8-424
  17. Ponomarenko J., Bui HH., Li W. et al. // BMC Bioinformatics. 2008. V. 9. P. 514. https://doi.org/10.1186/1471-2105-9-514
  18. Bangov I.P., Doytchinova I.A. // J. Mol. Model. V. 20. № 6. P. 2278. https://doi.org/10.1007/s00894-014-2278-5
  19. IEDB Solutions Center. Introducing the Antigen Summary Page. https://help.iedb.org/hc/en-us/articles/29457536364443
  20. Sharma N., Naorem L.D., Jain S., Raghava G.P.S. // Brief Bioinform. 2022. V. 23. № 5. P. 174. https://doi.org/10.1093/bib/bbac174
  21. Doytchinova I.A., Flower D.R. // BMC Bioinformatics. 2007. V. 8. P. 4. https://doi.org/10.1186/1471-2105-8-4
  22. Carvalho L., Sano Gi., Hafalla J. et al. // Nat. Med. 2002. V. 8. P. 166. https://doi.org/10.1038/nm0202-166
  23. Rapin N., Lund O., Bernaschi M., Castiglione F. // PLoS One. 2010. V. 5. № 4. P. 9862. https://doi.org/10.1371/journal.pone.0009862
  24. Jorgensen W.L., Chandrasekhar J., Madura J.D. et al. // J. Chem. Phys. 1983. V. 79. P. 926. https://doi.org/10.1063/1.445869
  25. Lemak A.S., Balabaev N.K. // Berendsen Thermostat. https://www.wellesu.com/10.1080/08927029408021981
  26. Bender C.M., Orszag S.A. // Advanced Mathematical Methods for Scientists and Engineers I. https://www.sci-hub.ru/10.1007/978-1-4757-3069-2
  27. Parrinello M., Rahman A. // Polymorphic transitions in single crystals: A new molecular dynamics method. https://www.sci-hub.ru/10.1063/1.1675789
  28. Hockney R.W., Eastwood J.W. // Computer Simulation Using Particles (CRC Press, Boca Raton, 1988)
  29. Lindorff-Larsen K., Piana S., Palmo K. et al. // Improved side-chain torsion potentials for the Amber ff99SB protein force field. https://pmc.ncbi.nlm.nih.gov/articles/PMC2970904/
  30. RCSB PDB. About RCSB PDB: A Living Digital Data Resource That Enables Scientific Breakthroughs Across The Biological Sciences. https://www.rcsb.org/pages/about-us/index
  31. Rakitina T.V., Smirnova E.V. // Crystals. 2023. V. 13. № 10. P. 1416. https://doi.org/10.3390/cryst13101416
  32. Компанец Г.Г. // Наука и образование: новое время. 2018. Т. 1. № 2. С. 68. https://doi.org/10.12737/article_5b3a1b88f15189.21816642

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. The location of the protein relative to the cell membrane; the numbers 1, 2 and 3 indicate the studied supramembrane domains.

Baixar (244KB)
3. Fig. 2. Spatial structure of the first studied domain of the A0A6B7HXR6 protein (T-cell epitopes are highlighted in dark gray, B-cell epitopes are highlighted in light gray, the subdomain richest in epitopes is highlighted in black circle).

Baixar (142KB)
4. Fig. 3. Spatial structure of the second studied domain of the A0A6B7HXR6 protein (T-cell epitopes are highlighted in dark gray, B-cell epitopes are highlighted in light gray, the subdomain richest in epitopes is highlighted in black circle).

Baixar (371KB)
5. Fig. 4. Spatial structure of the third studied domain of the A0A6B7HXR6 protein (T-cell epitopes are highlighted in dark gray, B-cell epitopes are highlighted in light gray, the subdomain richest in epitopes is highlighted in black circle).

Baixar (313KB)
6. Fig. 5. Spatial structure of the candidate vaccine (dark parts are epitopes, light parts are non-epitopes).

Baixar (136KB)
7. Fig. 6. Standard deviation of candidate vaccine atoms during molecular dynamics simulation.

Baixar (68KB)
8. Fig. 7. Root-mean-square fluctuation of amino acid residues of the vaccine candidate during molecular dynamics simulation.

Baixar (82KB)
9. Fig. 8. Radius of gyration of the vaccine candidate during molecular dynamics simulation.

Baixar (88KB)
10. Fig. 9.

Baixar (365KB)
11. Fig. 9.

Baixar (351KB)
12. Fig. 9. Immune response to a vaccine. Antibodies are classified by isotype (a). Concentration of cytokines and interleukins (b). D in the inset is a cytokine storm danger signal. Total number of B lymphocytes, memory cells and their division into isotypes (c). Number of B lymphocytes in blood plasma, divided into isotypes (d). Total number of T helper lymphocytes and memory cells (e). Total number of T regulatory lymphocytes, active cells and memory cells (e). Total number of macrophages, internalized, representing the major histocompatibility complex class II, active and resting macrophages (g).

Baixar (371KB)
13. Supplement
Baixar (21KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025