The Impact of Biochar and Biochar-Based Plant Composts on the Microbiological Activity of Agrosoddy-Podzolic Soil

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

In a short-term 30-day incubation experiment, the impact of biochar and plant composts on basal and substrate-induced respiration, as well as the activity of catalase, dehydrogenase, acid phosphatase, and urease enzymes in low-humus agrosoddy-podzolic soil (Albic Retisol (Aric, Loamic, Ochric)) was studied. Biochar was obtained by rapid pyrolysis from birch wood at 600°C. Composts were obtained from differing in nitrogen enrichment plant materials with and without addition of biochar. Biochar and composts were added to the soil in the amount of 1%. It was shown that the application of all studied reagents increased both basal and substrate-induced respiration by 1.5-2.1 times. Moreover, biochar contributes significantly more to the increase in the rate of substrate-induced respiration (and, consequently, microbial biomass carbon) than composts. At the same time, the analysis of microbial respiration indices indicates more favorable conditions of microbial communities functioning after the application of both biochar and composts to soils. The increase in microbiological activity was demonstrated in strengthening the activity of the studied enzymes and mineralization of organic matter. It is recommended to apply biochar to the soil only in combination with organic fertilizers, or to use it as a component of organic waste composting.

作者简介

K. Smirnova

Saint-Petersburg State University

Email: ks.smirnova.98@mail.ru
16th Line of Vasilyevsky Island, 29, Saint-Petersburg, 199178 Russia

S. Shaohui

Saint-Petersburg State University

16th Line of Vasilyevsky Island, 29, Saint-Petersburg, 199178 Russia

E. Orlova

Saint-Petersburg State University

16th Line of Vasilyevsky Island, 29, Saint-Petersburg, 199178 Russia

E. Abakumov

Saint-Petersburg State University

16th Line of Vasilyevsky Island, 29, Saint-Petersburg, 199178 Russia

N. Orlova

Saint-Petersburg State University

16th Line of Vasilyevsky Island, 29, Saint-Petersburg, 199178 Russia

S. Chukov

Saint-Petersburg State University

16th Line of Vasilyevsky Island, 29, Saint-Petersburg, 199178 Russia

参考

  1. Ананьева Н.Д., Сусьян Е.А., Гавриленко Е.Г. Особенности определения углерода микробной биомассы методом субстрат-индуцированного дыхания // Почвоведение. 2011. № 11. С. 1327–1333.
  2. Ананьева Н.Д., Хатит Р.Ю., Иващенко К.В., Сушко С.В., Горбачева А.Ю., Долгих А.В., Кадулин М.С., Сотникова Ю.Л., Васенев В.И., Комарова А.Е., Юдина А.В., Довлетярова Э.А. Биофильные элементы (СNР) и дыхательная активность микробного сообщества почв городских лесопарков Москвы и пригородных лесов // Почвоведение. 2023. № 1. С. 102–117.
  3. Аринушкина Е.В. Руководство по химическому анализу почв. М.: Изд-во МГУ, 1970. 487 с.
  4. Галстян А.Ш. Ферментативная активность почв Армении. Ереван: Айастан. 1974. 274 с.
  5. Дубровина И. А., Юркевич М. Г., Сидорова В. А. Влияние биоугля и удобрений на развитие растений ячменя и агрохимические показатели дерново-подзолистых почв в вегетационном опыте // Тр. КарНЦ РАН. 2020. № 3. С. 31–44. https://doi.org/10.17076/eb1087
  6. Звягинцев Д.Г., Асеева И.В., Бабьева И.П., Мирчинк Г.Г. Методы почвенной микробиологии и биохимии. М.: Изд-во МГУ, 1980. 223 с.
  7. Звягинцев Д.Г., Добровольская Т.Г., Бабьева И.П., Зенова Г.М., Лысак Л.В., Марфенина О.Е. Роль микроорганизмов в биогеоценотических функциях почв // Почвоведение. 1992. № 6. С. 63–77.
  8. Иващенко К.В., Ананьева Н.Д., Васенев В.И., Кудеяров В.Н., Валентини Р. Биомасса и дыхательная активность почвенных микроорганизмов в антропогенно-измененных экосистемах (Московская область) // Почвоведение. 2014. № 9. С. 1077–1088.
  9. Кирюшин В.И., Ганжара Н.Ф., Кауричев II.С., Орлов Д.С. Титлянова А.А., Фокин А.Д. Концепция оптимизации режима органического вещества почв в агроландшафтах. М.: Изд-во МСХА, 1993. 96 с.
  10. Крейер К.Г., Банкина Т.А., Орлова Н.Е., Юрьева Г.М. Практикум по агрохимическому анализу почв. Учебное пособие. СПб.: Изд-во СПбГУ, 2005. 88 с.
  11. Малюкова Л.С., Рогожина Е.В. Информативность показателей общей метаболической активности микробоценоза почв субтропиков России в оценке степени их агрогенных изменений // Субтропическое и декоративное садоводство. 2022. № 81. С. 151–161. https://doi.org/10.31360/2225-3068-2022-81-151-160
  12. Маслов М.Н., Маслова О.А., Поздняков Л.А., Копеина Е.И. Биологическая активность почв горно-тундровых экосистем при постпирогенном восстановлении // Почвоведение. 2018. № 6. С. 728–737. https://doi.org/10.7868/s0032180x18060096
  13. Минеев В.Г., Сычев В.Г., Амельянчик О.А., Болышева Т.Н., Гормонова Н.Ф., Дурынина Е.П., Егоров В.С. и др. Практикум по агрохимии. М.: Изд-во МГУ, 2001. 689 с.
  14. Овчинникова М.Ф. Признаки природной устойчивости и агрогенной трансформации гумуса почв // Почвоведение. 2013. № 12. С. 1449–1463. https://doi.org/10.7868/S0032180X18060059
  15. Орлова Е.Е. Практикум по агроэкологии. СПб.: Изд-во СПб. ун-та, 2011. 148 с.
  16. Рижия Е.Я., Бучкина Н.П., Мухина И.М. Применение биоугля в сельском хозяйстве Российской Федерации. СПб.: АФИ, 2014. 28 с.
  17. Рижия Е.Я., Мухина И.М., Вертебный В.Е., Хорак Я., Конончук П.Ю., Хомяков Ю.В. Ферментативная активность и эмиссия закиси азота из дерново-подзолистой супесчаной почвы с биоуглем // Сельскохозяйственная биология. 2017. № 3. С. 464–470. https://doi.org/10.15389/agrobiology.2017.3.464rus
  18. Семенов В.М., Когут Б.М. Почвенное органическое вещество. М.: ГЕОС, 2015. 233 с.
  19. Семенов М.В., Стольникова Е.В., Ананьева Н.Д., Иващенко К.В. Структура микробного сообщества почвы катены Правобережья р. Оки // Известия РАН. Серия биологическая. 2013. № 3. С. 299–308.
  20. Смирнова Е.В., Гиниятуллинa К.Г., Окуневa Р.В., Валеева А. А., Рязанов С.С. Оценка направленности и механизмов влияния внесения биоугля на субстрат-индуцированное дыхание почв в длительном лабораторном эксперименте // Почвоведение. 2023. № 9. С. 1190–1202. https://doi.org/10.31857/S0032180X23600312
  21. Хазиев Ф.Х. Методы почвенной энзимологии. М.: Наука, 2005. 252 с.
  22. Хазиев Ф.Х. Экологические связи ферментативной активности почв // Экобиотех. 2018. Т. 1. № 2. С. 80–92. https://doi.org/10.31163/2618-964X-2018-1-2-80-92
  23. Чуков С.Н. Структурно-функциональные параметры органического вещества в условиях антропогенного воздействия. СПб.: Изд-во СПб. ун-та, 2001. 216 с.
  24. Шахназарова В.Ю., Орлова Н.Е., Орлова Е.Е., Банкина Т.А., Якконен К.Л., Рижия Е.Я., Кичко А.А. Изменение таксономического состава и структуры прокариотного сообщества агродерново-подзолистой почвы при внесении биоугля // Сельскохозяйственная биология. 2020. Т. 55. 1. С. 163–173. https://doi.org/10.15389/agrobiology.2020.1.163rus
  25. Шевцова Л.К., Черников В.А., Сычев В.Г., Беличенко М.В., Рухович О.В., Иванова О.И. Влияние длительного применения удобрений на состав, свойства и структурные характеристики гумусовых кислот основных типов почв // Агрохимия. 2019. № 10. С. 3–15. https://doi.org/10.1134/S0002188119100120
  26. Щербакова Т.А. Ферментативная активность почв и трансформация органического вещества. Минск: Наука и техника, 1983. 222 с.
  27. Anderson J.P.E., Domsch K.H. A phisiological method for the quantitative measurement of microbial biomass in soils // Soil Biol. Biochem. 1978. V. 10. P. 215–221. https://doi.org/10.1016/0038-0717(78)90099-8
  28. Anderson T.-H. Microbial eco-physiological indicators to assess soil quality // Agric. Ecosyst. Environ. 2003. V. 98. P. 285–293. https://doi.org/10.1016/S0167-8809(03)00088-4
  29. Antonangelo J.A., Sun X., Zhang H. The roles of co-composted biochar (COMBI) in improving soil quality, crop productivity, and toxic metal amelioration // J. Environ. Manage. 2021. V. 277. P. 111443. https://doi.org/10.1016/j.jenvman.2020.111443
  30. Awad Y.M., Ok Y.S., Abrigata J., Beiyuan J., Beckers F., Tsang D.C., Rinklebe J. Pine sawdust biomass and biochars at different pyrolysis temperatures change soil redox processes // Sci. Total Environ. 2018. V. 625. P. 147–154. https://doi.org/10.1016/j.scitotenv.2017.12.194
  31. Awasthi M.K., Awasthi S.K., Wang Q., Wang, Z., Lahori A.H., Ren X., Chen H., Wang M., Zhao J., Zhang Z. Influence of biochar on volatile fatty acids accumulation and microbial community succession during biosolids composting // Bioresour. Technol. 2018. V. 251. P. 158–164. https://doi.org/10.1016/j.biortech.2017.12.037
  32. Beusch C. Biochar as a soil ameliorant: how biochar properties benefit soil fertility – a review // J. Geosci. Environ. Protection. 2021. V. 9. № 10. P. 28–46. https://doi.org/10.4236/gep. 2021.910003
  33. Blagodatskaya E., Kuzyakov Y. Active microorganisms in soil: Critical review of estimation criteria and approaches // Soil Biol. Biochem. 2013. V. 67. P. 192–211. https://doi.org/10.1016/j.soilbio.2013.08.024
  34. Chugunova M.V., Bakina L.G., Mayachkina N.V., Polyak Y.M., Gerasimov A.O. Features of the processes of detoxification and self-restoration of oil-contaminated soils – a field study // J. Soils Sediments. 2022. V. 22. № 12. Р. 3087–3105. https://doi.org/10.1007/s11368-022-03272-2
  35. Dai Z., Xiong X., Zhu H., Xu H., Leng P., Li J., Tang C., Xu J. Association of biochar properties with changes in soil bacterial, fungal and fauna communities and nutrient cycling processes // Biochar. 2021. V. 3. P. 239–254. https://doi.org/10.1007/s42773-021-00099-x
  36. Du J., Zhang Y., Qu M., Yin Y., Fan K., H, B., Zhang H., Wei M., Ma C. Effects of biochar on the microbial activity and community structure during sewage sludge composting // Bioresour. Technol. 2019. V. 272. P. 171–179. https://doi.org/10.1016/j.biortech.2018.10.020
  37. Godlewska P., Schmidt H.P., Ok Y.S., Oleszczuk P. Biochar for composting improvement and contaminants reduction. A Review // Bioresour. Technol. 2017. V. 246. P. 193–202. https://doi.org/10.1016/j.biortech.2017.07.095
  38. Gonçalves Lopes E.M.G., Reis M.M., Frazão L.A., da Mata Terra L.M., Lopes E.F., dos Santos M.M., Fernandes L.A. Biochar increases enzyme activity and total microbial quality of soil grown with sugarcane // Environ. Technol. Innov. 2021. V. 21. P. 101270. https://doi.org/10.1016/j.eti.2020.101270
  39. Gross A., Bromm T., Glaser B. Soil Organic Carbon Sequestration after Biochar Application: A Global MetaAnalysis // Agronomy. 2021. V. 11. P. 2474. https://doi.org/10.3390/agronomy11122474
  40. Grossman J.M., J’Neil B.E., Tsai S.M., Liang B., Neves E., Lehmann J., Thies J.E. Amazonian Anthrosols support similar microbial communities that differ distinctly from those extant in adjacent, unmodified soils of the same mineralogy // Microb. Ecol. 2010. V. 60. P. 192–205. https://doi.org/10.1007/s00248-010-9689-3
  41. Guo X.-x., Liu H.-t., Zhang J. The role of biochar in organic waste composting and soil improvement: a review // Waste Manag. 2020. V. 102. P. 884–899. https://doi.org/10.1016/j.wasman.2019.12.003
  42. Hussain S., Siddique T., Saleem M., Arshad M., Khalid A. Chapter 5 Impact of Pesticides on Soil Microbial Diversity, Enzymes, and Biochemical Reactions // Adv. Agron. 2009. V. 102. P. 160–190. https://doi.org/10.1016/S0065-2113(09)01005-0
  43. Igalavithana A.D., Lee S.E., Lee Y.H., Tsang D.C., Rinklebe J., Kwon E.E., Ok Y.S. Heavy metal immobilization and microbial community abundance by vegetable waste and pine cone biochar of agricultural soils // Chemosphere. 2017. V. 174. P. 593–603. https://doi.org/10.1016/j.chemosphere.2017.01.148
  44. Jindo K., Sonoki T., Matsumoto K., Canellas L., Roig A., Sanchez-Monedero M.A. Influence of biochar addition on the humic substances of composting manures // Waste Manag. 2016. V. 49. P. 545–552. https://doi.org/10.1016/j.wasman.2016.01.007
  45. Jindo K., Sánchez-Monedero M.A., Matsumoto K., Sonoki T. The efficiency of a low dose of biochar in enhancing the aromaticity of humic-like substance extracted from poultry manure compost // Agronomy. 2019. V. 9. P. 248. https://doi.org/10.3390/agronomy9050248
  46. Kocsis T., Ringer M., Biró B. Characteristics and Applications of Biochar in Soil–Plant Systems: A Short Review of Benefits and Potential Drawbacks // Appl. Sci. 2022. V. 12. № 8. P. 4051. https://doi.org/10.3390/app12084051
  47. Lehman J., Rilling M.C., Tiers J., Masiello C.A., Hockaday W.C., Crowley D. Biochar effects on soil biota – A review // Soil Biol. Biochem. 2011. P. 1812–1836. https://doi.org/10.1016/j.soilbio.2011.04.022
  48. Lehmann J., Cowie A., Masiello C., Kammann C., Woolf D., Amonette J., Cayuela M., Camps-Arbestain M., Whitman T. Biochar in climate change mitigation // Nat. Geosci. 2021. V. 14. P. 883–892. https://doi.org/10.1142/9781848166561_0018
  49. Maestrini B., Nannipieri P., Abiven S. A meta-analysis on pyrogenic organic matter induced priming effect // Glob. Chang. Biol. Bioenergy. 2015. V. 7. P. 577–590. https://doi.org/10.1111/gcbb.12194
  50. Orlova N., Abakumov E., Orlova E., Yakkonen K., Shahnazarova V. Soil organic matter alteration under biochar amendment: study in the incubation experiment on the Podzol soils of the Leningrad region // J. Soils Sediments. 2019. V. 19. Р. 2708–2716. https://doi.org/10.1007/s11368-019-02256-z
  51. Orlova N., Orlova E., Abakumov E., Smirnova K., Chukov S. humic acids formation during compositing of plant remnants in presence of calcium carbonate and biochar // Agronomy. 2022. V. 12. № 10. P. 2275. https://doi.org/10.3390/agronomy12102275
  52. Palansooriya K.N., Wong J.T.F., Hashimoto Y., Huang L., Rinklebe J., Chang S.X., Bolan N., Wang H., Ok Y.S. Response of microbial communities to biochar-amended soils: a critical review // Biochar. 2019. V. 1. P. 3–22. https://doi.org/10.1007/s42773-019-00009-2
  53. Pepper I.L., Gerba C.P., Brendecke J.W. Environmental microbiology: a laboratory manual. N. Y.: Academic Press Inc., 1995. 175 p.
  54. Pietikäinen J., Kiikkilä O., Fritze H. Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus // Oikos. 2000. V. 89. № 2. P. 231–242. https://doi.org/10.1034/j.1600-0706.2000.890203.x
  55. Piotrowska-Dlugosz A., Lemanowicz J., Dlugosz J. The spatial pattern and seasonal changes in the soil phosphorus content in relation to the phosphatase activity: a case study of Luvisols // Arch. Agron. Soil Sci. 2020. V. 66. №. 11. P. 1583– 1597. https://doi.org/10.1080/03650340.2020.1759798
  56. Rizhiya E.Y., Buchkina N.P., Mukhina I.M., Belinets A.S., Balashov E.V. Effect of biochar on the properties of loamy sand spodosol soil samples with different fertility levels: a laboratory experiment // Eurasian Soil Sci. 2015. V. 48. № 2. P. 192–200. https://doi.org/10.1134/s1064229314120084
  57. Shiade G.S.R., Fathi A., Minkina T., Wong M.H., Rajput V.D. Biochar application in agroecosystems: a review of potential benefits and limitations // Environ. Dev. Sustain. 2024. V. 26. P. 19231–19255. https://doi.org/10.1007/s10668-023-03470-z
  58. Sun Y., Wang X., Yang C., Xin X., Zheng J., Zong T., Dou C. Effects of Biochar on Gaseous Carbon and Nitrogen Emissions in Paddy Fields: A Review // Agronomy. 2024. V. 14. № 7. P. 1461. https://doi.org/10.3390/agronomy14071461
  59. Taraqqi-A-Kamal A., Atkinson C.J., Khan A., Zhang K., Sun P., Akther S., Zhang Y. Biochar remediation of soil: linking biochar production with function in heavy metal contaminated soils: Review // Plant Soil Environ. 2021. V. 67. № 4. P. 83–201. https://doi.org/10.17221/544/2020-PSE
  60. Upadhyay V., Choudhary K.K., Agrawa S.B. Use of biochar as a sustainable agronomic tool, its limitations and impact on environment: a review // Discov. Agric. 2024. V. 2. https://doi.org/10.1007/s44279-024-00033-2
  61. Wang N., Ren L., Zhang J., Awasthi M., Yan B., Zhang L., Wan F., Luo L., Huang H., Zhao K. Activities of functional enzymes involved in C, N, and P conversion and their stoichiometry during agricultural waste composting with biochar and biogas residue amendments // Bioresour. Technol. 2022. V. 345. P. 126489. https://doi.org/10.1016/j.biortech.2021.126489
  62. Wang S.P., Wang L., Sun Z.Y., Wang S.T., Shen C.H., Tang Y.Q., Kida K. Biochar addition reduces nitrogen loss and accelerates composting process by affecting the core microbial community during distilled grain waste composting // Bioresour. Technol. 2021. V. 337. P. 125492. https://doi.org/10.1016/j.biortech.2021.125492
  63. Wardle D.A., Ghani A. A critique of the microbial metabolic quotient qCO2 as a bioindicator of disturbance and ecosystem development // Soil Biol. Biochem. 1995. V. 27. P. 1601–1610. https://doi.org/10.1016/0038-0717(95)00093-T
  64. Wei L., Shutao W., Jin Z., Ton, X. Biochar influences the microbial community structure during tomato stalk composting with chicken manure. Bioresour. Technol. 2014. V. 154. P. 148–154. https://doi.org/10.1016/j.biortech.2013.12.022
  65. Yang Ch., Dou S., Guo D., Zhao H. The Application of Biochar Enhances Soil Organic Carbon and Rice Yields // Agronomy. 2024 V. 14. P. 455. https://doi.org/10.3390/agronomy14030455
  66. Zhang F, Wei Z, Wang J. Integrated application effects of biochar and plant residue on ammonia loss, heavy metal immobilization, and estrogen dissipation during the composting of poultry manure // Waste Manag. 2021. V. 131. P. 117–125. https://doi.org/10.1016/j.wasman.2021.05.037
  67. Zhang J., Lü F., Shao L., He P. The use of biochar-amended composting to improve the humification and degradation of sewage sludge // Bioresour. Technol. 2014. V. 168. P. 252–258. https://doi.org/10.1016/j.biortech.2014.02.080

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025