Eigenoscillations of the junction of an elastic body and thin rods

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

We study behaviour of eigenfrequencies of an anisotropic and homogeneous body with several thin cylindrical elastic rods whose exterior ends are clamped. We prove that, as rods thin, in the low-frequency range limits of normalized eigenvalues of the singularly perturbed elasticity problem imply eigenvalues of the family of systems of ordinary differential equations on rod’s axes with the Dirichlet and the Steklov boundary conditions at the outer and inner endpoints respectively while the systems are combined into a joint spectral problem by these the Steklov conditions. For an isotropic junction the limiting problem decouples into the Dirichlet problem for fourth order differential operators and the algebraic problem for a symmetric positive matrix of a size dependent on the number of clamped rods.

Sobre autores

S. Nazarov

Institute of Problems of Mechanical Science RAS

Autor responsável pela correspondência
Email: srgnazarov@yahoo.co.uk
St. Petersburg, Russia

Bibliografia

  1. Bertram A. Elasticity and Plasticity of Large Deformations. Berlin: Springer, 2005.
  2. Nazarov S.A. Asymptotic Theory of Thin Plates and Rods. Dimension Reduction and Integral Estimates. Novosibirsk: Nauch. kniga, 2002. (in Russian)
  3. Ladyzhenskaya O.A. The Boundary Value Problems of Mathematical Physics. N. Y.: Springer, 1985.
  4. Fichera G. Existence Theorems in Elasticity. Berlin; Heidelberg; N. Y.: Springer, 1972.
  5. Lions J.-L., Magenes E. Problémes aux limites non homogénes et applications. Paris: Dunod, 1968.
  6. Nazarov S.A. Junction problem of bee-on-ceiling type in the theory of anisotropic elasticity // C. R. Acad. Sci. Paris. Sér. 1, 1995, vol. 320, no. 11, pp. 1419–1424. https://doi.org/10.1016/0764-4442(95)90092-6
  7. Kozlov V.A., Maz’ya V. G., Movchan A.B. Asymptotic representation of elastic fields in a multi-structure // Asymptot. Anal., 1995, vol. 11, no. 4, pp. 343–415. https://doi.org/10.3233/ASY-1995-11402
  8. Kozlov V.A., Maz’ya V.G., Movchan A.B. Asymptotic Analysis of Fields in Multi-Structures. Oxford Math. Monogr. Oxford: Clarendon, 1999. https://doi.org/10.1093/oso/9780198514954.001.0001
  9. Kozlov V.A., Maz’ya V. G., Movchan A.B. Fields in non-degenerate 1D–3D elastic multistructures // Quart. J. Mech. Appl. Math. 2001, vol. 54, no. 2, pp. 177–212. https://doi.org/10.1093/qjmam/54.2.177
  10. Nazarov S.A. Asymptotics of solutions to the spectral elasticity problem for a spatial body with a thin coupler // Sib. Math. J., 2012, vol. 53, no. 3, pp. 274–290. https://doi.org/10.1134/S0037446612020103
  11. Beale J.T. Scattering frequencies of resonators // Comm. Pure Appl. Math., 1973, vol. 26, no. 4, pp. 549–563. https://doi.org/10.1002/cpa.3160260406
  12. Arsen’ev A.A. The existence of resonance poles and scattering resonances in the case of boundary conditions of the second and third kind // U.S.S.R. Comput. Math. Math. Phys., 1976, vol. 16, no. 3, pp. 171–177.
  13. Gadyl’shin R.R. Characteristic frequencies of bodies with thin spikes. I. Convergence and estimates // Math. Notes, 1993, vol. 54, no. 6, pp. 1192—1199.
  14. Kozlov V.A., Maz’ya V.G, Movchan A.B. Asymptotic analysis of a mixed boundary value problem in a multi-structure // Asymptot. Anal., 1994, vol. 8, no 2, pp. 105–143. https://doi.org/10.3233/ASY-1994-8201
  15. Nazarov S.A. Junctions of singularly degenerating domains with different limit dimensions. 1 // J. Math. Sci., 1996, vol. 80, no. 5, pp. 1989–2034. 27 https://doi.org/10.1007/BF02362511
  16. Nazarov S.A. Asymptotic analysis and modeling of the jointing of a massive body with thin rods // J. Math. Sci., 2005, vol. 127, no 5, pp. 2172–2263. https://doi.org/10.1007/s10958-005-0177-0
  17. Gadyl’shin R.R. On the eigenvalues of a “dumbbell with a thin handle” // Izv. Math., 2005, vol. 69, no. 2, pp. 265–329.
  18. Joly P., Tordeux S. Matching of asymptotic expansions for wave propagation in media with thin slots I: The asymptotic expansion // SIAM Multiscale Model. Simul, 2006, vol. 5, no. 1, pp. 304–336. https://doi.org/10.1137/05064494X
  19. Lin J., Zhang H. Scattering and field enhancement of a perfect conducting narrow slit // SIAM J. on Appl. Math., 2017, vol. 77, no. 3, pp. 951–976. https://doi.org/10.1137/16M1094464
  20. Lin J., Zhang H. Scattering by a periodic array of subwavelength slits I: field enhancement in the diffraction regime // Multiscale Model. Sim., 2018, vol. 16, no. 2, pp. 922–953. https://doi.org/10.1137/17M1133774
  21. Chesnel L., Nazarov S.A. Design of an acoustic energy distributor using thin resonant slits // Proc. Royal Soiety, 2021, vol. 477, no. 2247. https://doi.org/10.1098/rspa.2020.0896
  22. Sanchez-Hubert J., Sanchez-Palencia É. Couplage flexion-torsion-traction dans les poutres anisotropes a section heterogene // C. R. Acad. Sci. Paris. Ser. 2, 1991, vol. 312, no. 4, pp. 337–344.
  23. Nazarov S.A. Justification of the asymptotic theory of thin rods. Integral and pointwise estimates // J. Math. Sci. 1999, vol. 97, no. 4, pp. 4245–4279. https://doi.org/10.1007/BF02365044
  24. Sanchez-Hubert J., Sanchez-Palencia É. Coques elastiques mines. Proprietes asymptotiques. Paris: Masson, 1997.
  25. Yeliseyev V.V, Orlov I.S. Asymptotic splitting in the three-dimensional problem of linear elasticity for elongated bodies with a structure // J. AMM, 1999, vol. 63, no. 1, pp. 85–92. https://doi.org/10.1016/S0021-8928(99)00013-1
  26. Panassenko G. Multi-Scale Modelling for Structures and Composites // Dordrecht: Springer, 2005. https://doi.org/10.1007/1-4020-2982-9
  27. Nazarov S.A. Korn’s inequality for an elastic junction of a body with a rod // Problem of Mech. of Solids, 2002, pp. 234–240. (in Russian)
  28. Nazarov S.A. Korn’s inequalities for elastic junctions of massive bodies and thin plates and rods // Russ. Math. Surveys, 2008, vol. 63, no. 1, pp. 35–107.
  29. Nazarov S.A. A general scheme for averaging self-adjoint elliptic systems in multidimensional domains, including thin domains // St. Petersburg Math. J., 1996, vol. 7, no. 5, pp. 681–748.
  30. Panassenko G.P. Asymptotic analysis of bar systems. 1. // Russian J. Math. Pis., 1994, vol. 2, no. 3, pp. 325–352; 2. // ibid. 1996, vol. 4, no. 1, pp. 87–116.
  31. Korn A. Solution générale du probléme d’équilibre dans la théorie l’élasticité dans le cas où les efforts sont donnés à la surface // Ann. Université Toulouse, 1908, pp. 165–269.
  32. Cioranescu D., Oleinik O.A., Tronel G. On Korn’s inequalities for frame type structures and junctions // C. R. Acad. Sci. Paris Sér. 1 Math. 1989, vol. 309, no. 9, pp. 591–596.
  33. Nazarov S.A. Korn’s inequalities for junctions of spatial bodies and thin rods // Math. Methods Appl. Sci., 1997, vol. 20, no. 3, pp. 219–243.
  34. Duvaut G., Lions J.-L. Les inèquations en mêcanique et en physique, Paris: Dunod, 1972.
  35. Kondrat’ev V.A., Oleinik O.A. Boundary-value problems for the system of elasticity theory in unbounded domains. Korn’s inequalities // Russ. Math. Surveys, 1988, vol. 43, no. 5, pp. 65–119.
  36. Nazarov S.A. The Korn inequalities which are asymptotically sharp for thin domains // Vestn. St.Petersburg Univ. Math., 1992, vol. 25, no. 2, рр. 18–22.
  37. Rabotnov Yu.N. Mechanics of a Deformable Solid. Moscow: Nauka, 1988.
  38. Nazarov S.A. The polynomial property of self-adjoint elliptic boundary-value problems and the algebraic description of their attributes // Russ. Math. Surveys, 1999, vol. 54, no. 5, pp. 947–1014.
  39. Kondrat’ev V.A. Boundary problems for elliptic equations in domains with conical or angular points // Trans. Moscow Math. Soc., 1967, vol. 16, pp. 227–313.
  40. Nazarov S.A., Plamenevsky B.A. Elliptic Problems in Domains with Piecewise Smooth Boundaries. Berlin; N. Y.: Walter de Gruyter, 1994.
  41. Kozlov V.A., Maz’ya V.G., Rossmann J. Elliptic Boundary Value Problems in Domains with Point Singularities. Providence: Amer. Math. Soc., 1997.
  42. Van-Dyke M.D. Perturbation Methods in Fkuid Mechanics. N.-Y.; L.: Acad. Press., 1964.
  43. Il’in A.M. Matching of Asymptotic Expansions of Solutions of Boundary Value Problems. Providence, Rhode Island: Americal Math. Soc., 1992.
  44. Maz’ya V., Nazarov S., Plamenevskij B. Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains. Vol. 1 & 2. Basel: Birkhäuser Verlag, 2000). https://doi.org/10.1002/zamm.19930730312
  45. Birman M.S., Solomyak M.Z. Spectral Theory and Selfadjoint Operators in Hilbert Space. Dordrecht: Reidel, 1987.
  46. Vishik M.I., Lyusternik L.A. Regular degeneration and boundary layer for linear differential equations with small parameter // Transl., Ser. 2, Am. Math. Soc., 1962, vol. 20, pp. 239–364.
  47. Rzhanitsin A.R. Construction Mechanics. Moscow: High school, 1982. (in Russian)
  48. Svetlitskii V.A. Mechanics of Rods. Vol. 1 & 2. Moscow: High school, 1987. (in Russian)
  49. Tutek Z., Aganovich I. A justification of the one-dimensional model of an elastic beam // Math. Methods in Appl. Sci., 1986, vol. 8, pp. 1–14.
  50. Nazarov S.A. Oscillations of elastic solids with small heavy inclusions (concentrated masses) // J. AMM (submitted)
  51. Panasenko G.P. Averaging of processes in strongly inhomogeneous structures // Dokl. Math., 1988, vol. 33, no. 1, pp. 20–22.
  52. Panasenko G.P. Multicomponent homogenization for processes in essentially nonhomogeneous structures // Math. USSR-Sb., 1991, vol. 69, no. 1, pp. 143–153.
  53. Argatov I.I., Nazarov S.A. Equilibrium of an elastic body pierced by horizontal thin elastic rods // J. of Appl. Math. Techn. Physics, 1999, vol. 40, no. 4, pp. 763–768.
  54. Cioranescu D., Oleinik O.A., Tronel G. Korn’s inequalities for frame type structures and junctions with sharp estimates for the constants // Asymptot. Anal., 1994, vol. 8, no. 1, pp. 1–14. https://doi.org/10.3233/ASY-1994-8101

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025