Advances in applied genomics of white poplars: results and prospects of genome editing and modification
- Authors: Monastyrskaya M.O.1, Kovalev M.A.1, Gladysh N.S.1, Popchenko M.I.1,2, Kudryavtseva A.V.1
-
Affiliations:
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences
- Institute of Geography, Russian Academy of Sciences
- Issue: Vol 145, No 2 (2025)
- Pages: 153-160
- Section: Articles
- Submitted: 10.07.2025
- Accepted: 10.07.2025
- Published: 10.07.2025
- URL: https://rjonco.com/0042-1324/article/view/687235
- DOI: https://doi.org/10.31857/S0042132425020063
- EDN: https://elibrary.ru/FGDLIOV
- ID: 687235
Cite item
Full Text
Abstract
Genome editing has many potential applications in green building and forestry by altering genome sequences that control tree growth and development, stress response, and resistance to diseases and pests. Using tools such as CRISPR/Cas9 targeted changes in genomes can improve desired quantitative and qualitative traits. Genome editing has great potential to solve problems in silviculture: by manipulating genes associated with lignin biosynthesis, researchers have successfully reduced the lignin content of poplar wood, increasing the efficiency of fiber production; genome editing applied to increase cellulose production has resulted in increased biomass productivity; various genome editing techniques have been used to control poplar blooms, allowing sterile forms to be bred, preventing the spread of genetically modified traits among non-target populations.
Full Text

About the authors
M. O. Monastyrskaya
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences
Email: natalyagladish@gmail.com
Russian Federation, Moscow
M. A. Kovalev
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences
Email: natalyagladish@gmail.com
Russian Federation, Moscow
N. S. Gladysh
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences
Author for correspondence.
Email: natalyagladish@gmail.com
Russian Federation, Moscow
M. I. Popchenko
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences; Institute of Geography, Russian Academy of Sciences
Email: natalyagladish@gmail.com
Russian Federation, Moscow; Moscow
A. V. Kudryavtseva
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences
Email: natalyagladish@gmail.com
Russian Federation, Moscow
References
- Макарова С.С., Хромов А.В., Спеченкова Н.А. и др. Использование системы CRISPR/Cas для создания растений, устойчивых к патогенам // Биохимия. 2019. Т. 84 (1). С. 24–37.
- Михайлова Е.В., Хуснутдинов Э.А., Чемерис А.В., Кулуев Б.Р. Доступный арсенал систем CRISPR/Cas для геномного редактирования растений // Физиол. раст. 2022. Т. 69 (1). С. 38–53.
- Тараканов В.В., Паленова М.М., Паркина О.В. и др. Селекция лесных деревьев в России: достижения, проблемы, приоритеты // Лесохоз. информ. 2021. № 1. С. 100–143.
- Царев А.П., Лаур Н.В. Перспективные направления селекции и репродукции лесных древесных растений // Изв. вуз. Лесн. журн. 2013. № 2 (332). С. 36–44.
- An Y., Geng Y., Yao J. et al. Efficient genome editing in populus using CRISPR/Cas12a // Front. Plant Sci. 2020. V. 11. 593938.
- An Y., Geng Y., Yao J. et al. An improved CRISPR/Cas9 system for genome editing in populus by using mannopine synthase (MAS) promoter // Front. Plant Sci. 2021. V. 12. 703546.
- Bai Q., Duan B., Ma J. et al. Coexpression of PalbHLH1 and PalMYB90 genes from Populus alba enhances pathogen resistance in poplar by increasing the flavonoid content // Front. Plant Sci. 2020. V. 10. 1772.
- Cho J.-S., Nguyen V.P., Jeon H.-W. et al. Overexpression of PtrMYB119, a R2R3-MYB transcription factor from Populus trichocarpa, promotes anthocyanin production in hybrid poplar // Tree Physiol. 2016. V. 36 (9). P. 1162–1176.
- Dai W., Cheng Z.-M., Sargent W.A. Expression of the rolB gene enhances adventitious root formation in hardwood cuttings of aspen // In Vitro Cell. Dev. Biol. Plant. 2004. V. 40 (4). P. 366–370.
- Delledonne M., Allegro G., Belenghi B. et al. Transformation of white poplar (Populus alba L.) with a novel Arabidopsis thaliana cysteine proteinase inhibitor and analysis of insect pest resistance // Mol. Breed. 2001. V. 7 (1). P. 35–42.
- Duan Y., Jiang Y., Ye S. et al. PtrWRKY73, a salicylic acidinducible poplar WRKY transcription factor, is involved in disease resistance in Arabidopsis thaliana // Plant Cell Rep. 2015. V. 34 (5). P. 831–841.
- Ellis B., Jansson S., Strauss S.H., Tuskan G.A. Why and how Populus became a “Model tree” // Genetics and Genomics of Populus / Eds S. Jansson, R. Bhalerao, A. Groover. N.Y.: Springer, 2010. P. 3–14.
- Fan D., Liu T., Li C. et al. Efficient CRISPR/Cas9-mediated targeted mutagenesis in populus in the first generation // Sci. Rep. 2015. V. 5 (1). 12217.
- Han K.-H., Ma C., Strauss S.H. Matrix attachment regions (MARs) enhance transformation frequency and transgene expression in poplar // Transgen. Res. 1997. V. 6 (6). P. 415–420.
- Hu J.J., Tian Y.C., Han Y.F. et al. Field evaluation of insect-resistant transgenic Populus nigra trees // Euphytica. 2001. V. 121 (2). P. 123–127.
- Ji S.D., Wang Z.Y., Fan H.J. et al. Heterologous expression of the Hsp24 from Trichoderma asperellum improves antifungal ability of Populus transformant Pdpap-Hsp24 s to Cytospora chrysosperma and Alternaria alternate // J. Plant Res. 2016. V. 129 (5). P. 921–933.
- Jia Z., Sun Y., Yuan L. et al. The chitinase gene (Bbchit1) from Beauveria bassiana enhances resistance to Cytospora chrysosperma in Populus tomentosa Carr. // Biotechnol. Lett. 2010a. V. 32 (9). P. 1325–1332.
- Jia Z., Gou J., Sun Y. et al. Enhanced resistance to fungal pathogens in transgenic Populus tomentosa Carr. by overexpression of an nsLTP-like antimicrobial protein gene from motherwort (Leonurus japonicus) // Tree Physiol. 2010b. V. 30 (12). P. 1599–1605.
- Jiang Y., Guo L., Ma X. et al. The WRKY transcription factors PtrWRKY18 and PtrWRKY35 promote Melampsora resistance in Populus // Tree Physiol. 2017. V. 37 (5). P. 665–675.
- Jouanin L., Brasileiro A., Leplé J. et al. Genetic transformation: a short review of methods and their applications, results and perspectives for forest trees // Ann. For. Sci. 1993. V. 50 (4). P. 325–336.
- Karim A., Jiang Y., Guo L. et al. Isolation and characterization of a subgroup IIa WRKY transcription factor PtrWRKY40 from Populus trichocarpa // Tree Physiol. 2015. V. 35 (10). P. 1129–1139.
- Kim M.-H., Cho J.-S., Bae E.-K. et al. PtrMYB120 functions as a positive regulator of both anthocyanin and lignin biosynthetic pathway in a hybrid poplar // Tree Physiol. 2021. V. 41 (12). P. 2409–2423.
- Korotkova A.M., Gerasimova S.V., Shumny V.K., Khlestkina E.K. Crop genes modified using CRISPR/Cas system // Vavilov J. Gen. Breed. 2017. V. 21 (2). P. 250–258.
- Kovalev M.A., Gladysh N.S., Bogdanova A.S. et al. Editing metabolism, sex, and microbiome: how can we help poplar resist pathogens? // Int. J. Mol. Sci. 2024. V. 25 (2). 1308.
- Kovalitskaya Y., Dayanova L., Shestibratov A.A. RNA interference-mediated down-regulation of 4-coumarate: coenzyme A ligase in Populus tremula alters lignification and plant growth // Int. J. Env. Sci. Educ. 2016. V. 11 (18). P. 12259–12271.
- Li N., Han X., Feng D. et al. Signaling crosstalk between salicylic acid and ethylene/jasmonate in plant defense: do we understand what they are whispering? // Int. J. Mol. Sci. 2019. V. 20 (3). 671.
- Li L., Sun W., Wang P. et al. Characterization, expression, and functional analysis of the pathogenesis-related gene PtDIR11 in transgenic poplar // Int. J. Biol. Macromol. 2022. V. 210. P. 182–195.
- Li Y., Zhang R., Sun L., Cao C. Resistance of Populus davidiana × P. bolleana overexpressing cinnamoyl-CoA reductase gene to Lymantria dispar larvae // Transgenic Res. 2025. V. 34 (1). 10.
- Liu H., Zhang H., Yang F. et al. Ethylene activates poplar defense against Dothiorella gregaria Sacc by regulating reactive oxygen species accumulation // Physiol. Plantarum. 2022. V. 174 (3). e13726.
- Ma D., Reichelt M., Yoshida K. et al. Two R2R3‐MYB proteins are broad repressors of flavonoid and phenylpropanoid metabolism in poplar // Plant J. 2018. V. 96 (5). P. 949–965.
- Ma D., Tang H., Reichelt M. et al. Poplar MYB117 promotes anthocyanin synthesis and enhances flavonoid B-ring hydroxylation by up-regulating the flavonoid 3′,5′-hydroxylase gene // J. Exp. Botany. 2021. V. 72 (10). P. 3864–3880.
- Mellway R.D., Tran L.T., Prouse M.B. et al. The wound-, pathogen-, and ultraviolet B-responsive MYB134 gene encodes an R2R3 MYB transcription factor that regulates proanthocyanidin synthesis in poplar // Plant Physiol. 2009. V. 150 (2). P. 924–941.
- Meyermans H., Morreel K., Lapierre C. et al. Modifications in lignin and accumulation of phenolic glucosides in poplar xylem upon down-regulation of caffeoyl-coenzyme A O-methyltransferase, an enzyme involved in lignin biosynthesis // J. Biol. Chem. 2000. V. 275 (47). P. 36899–36909.
- Moreno-Cortés A., Ramos-Sánchez J.M., Hernández-Verdeja T. et al. Impact of RAV1-engineering on poplar biomass production: a short-rotation coppice field trial // Biotechnol. Biofuels. 2017. V. 10 (1). 110.
- Palma Ferreira S. Populus euphratica: an incompatible host for biotrophic pathogens? // Mol. Plant Pathol. 2016. V. 17 (7). P. 999–1003.
- Palma L., Muñoz D., Berry C. et al. Bacillus thuringiensis toxins: an overview of their biocidal activity // Toxins. 2014. V. 6 (12). P. 3296–3325.
- Park Y.W., Baba K., Furuta Y. et al. Enhancement of growth and cellulose accumulation by overexpression of xyloglucanase in poplar // FEBS Lett. 2004. V. 564 (1–2). P. 183–187.
- Parsons T.J., Sinkar V.P., Stettler R.F. et al. Transformation of poplar by Agrobacterium tumefaciens // Nat. Biotechnol. 1986. V. 4 (6). P. 533–536.
- Plett J.M., Wilkins O., Campbell M.M. et al. Endogenous overexpression of Populus MYB186 increases trichome density, improves insect pest resistance, and impacts plant growth: poplar MYB186 impacts growth and pest resistance // Plant J. 2010. V. 64 (3). P. 419–432.
- Ralph S.G. Studying Populus defenses against insect herbivores in the post-genomic era // Crit. Rev. Plant Sci. 2009. V. 28 (5). P. 335–345.
- Song Q., Kong L., Yang X. et al. PtoMYB142, a poplar R2R3-MYB transcription factor, contributes to drought tolerance by regulating wax biosynthesis // Tree Physiol. 2022. V. 42 (10). P. 2133—2147.
- Su Y., Li H.-G., Wang Y. et al. Poplar miR472a targeting NBS-LRRs is involved in effective defence against the necrotrophic fungus Cytospora chrysosperma // J. Exp. Botan. 2018. V. 69 (22). P. 5519–5530.
- Thakur A.K., Aggarwal G., Srivastava D.K. Genetic modification of lignin biosynthetic pathway in Populus ciliata Wall. via agrobacterium-mediated antisense CAD gene transfer for quality paper production // Natl. Acad. Sci. Lett. 2012a. V. 35 (2). P. 79–84.
- Thakur A.K., Saraswat A., Srivastava D.K. In vitro plant regeneration through direct organogenesis in Populus deltoides clone G48 from petiole explants // J. Plant Biochem. Biotechnol. 2012b. V. 21 (1). P. 23–29.
- Thakur A.K., Kumar P., Parmar N. et al. Achievements and prospects of genetic engineering in poplar: a review // New Forests. 2021. V. 52 (6). P. 889–920.
- Ullah C., Unsicker S.B., Fellenberg C. et al. Flavan-3-ols are an effective chemical defense against rust infection // Plant Physiol. 2017. V. 175 (4). P. 1560–1578.
- Ullah C., Tsai C., Unsicker S.B. et al. Salicylic acid activates poplar defense against the biotrophic rust fungus Melampsora larici‐populina via increased biosynthesis of catechin and proanthocyanidins // New Phytol. 2019. V. 221 (2). P. 960–975.
- Ullah C., Schmidt A., Reichelt M. et al. Lack of antagonism between salicylic acid and jasmonate signalling pathways in poplar // New Phytol. 2022. V. 235 (2). P. 701–717.
- Wan S., Li C., Ma X., Luo K. PtrMYB57 contributes to the negative regulation of anthocyanin and proanthocyanidin biosynthesis in poplar // Plant Cell Rep. 2017. V. 36 (8). P. 1263–1276.
- Wang C., Bao Y., Wang Q., Zhang H. Introduction of the rice CYP714D1 gene into Populus inhibits expression of its homologous genes and promotes growth, biomass production and xylem fibre length in transgenic trees // J. Exp. Botan. 2013. V. 64 (10). P. 2847–2857.
- Wang H., Wang X., Yu C. et al. MYB transcription factor PdMYB118 directly interacts with bHLH transcription factor PdTT8 to regulate wound-induced anthocyanin biosynthesis in poplar // BMC Plant Biol. 2020. V. 20 (1). 73.
- Wang J., Constabel C.P. Polyphenol oxidase overexpression in transgenic Populus enhances resistance to herbivory by forest tent caterpillar (Malacosoma disstria) // Planta. 2004. V. 220 (1). P. 87–96.
- Wang L., Ran L., Hou Y. et al. The transcription factor MYB115 contributes to the regulation of proanthocyanidin biosynthesis and enhances fungal resistance in poplar // New Phytol. 2017. V. 215 (1). P. 351–367.
- Wang L., Lu W., Ran L. et al. R2R3‐MYB transcription factor MYB6 promotes anthocyanin and proanthocyanidin biosynthesis but inhibits secondary cell wall formation in Populus tomentosa // Plant J. 2019. V. 99 (4). P. 733–751.
- Wang S., Liu J., Dong Y. et al. Dynamic monitoring of the impact of insect-resistant transgenic poplar field stands on arthropod communities // Forest Ecol. Manag. 2022. V. 505. 119921.
- Wang W., Bai X.-D., Chen K. et al. Role of PsnWRKY70 in regulatory network response to infection with Alternaria alternata (Fr.) Keissl in populus // Int. J. Mol. Sci. 2022. V. 23 (14). 7537.
- Wei T., Harris L., Newton R.J. Plant biotechnology: a case study of Bacillus thuringiensis (Bt) and its application to the future of genetic engineered trees // J. Forest. Res. 2004. V. 15 (1). P. 1–10.
- Yao T., Yuan G., Lu H. et al. CRISPR/Cas9-based gene activation and base editing in Populus // Hortic. Res. 2023. V. 10 (6). uhad085.
- Ye S., Jiang Y., Duan Y. et al. Constitutive expression of the poplar WRKY transcription factor PtoWRKY60 enhances resistance to Dothiorella gregaria Sacc. in transgenic plants // Tree Physiol. 2014. V. 34 (10). P. 1118–1129.
- Yevtushenko D.P., Misra S. Enhancing disease resistance in poplar through modification of its natural defense pathway // Plant Mol. Biol. 2019. V. 100 (4–5). P. 481–494.
- Yoshida K., Ma D., Constabel C.P. The MYB182 protein down-regulates proanthocyanidin and anthocyanin biosynthesis in poplar by repressing both structural and regulatory flavonoid genes // Plant Physiol. 2015. V. 167 (3). P. 693–710.
- Yuan L., Wang L., Han Z. et al. Molecular cloning and characterization of PtrLAR3, a gene encoding leucoanthocyanidin reductase from Populus trichocarpa, and its constitutive expression enhances fungal resistance in transgenic plants // J. Exp. Botan. 2012. V. 63 (7). P. 2513–2524.
- Zelasco S., Reggi S., Calligari P. et al. Expression of the Vitreoscilla hemoglobin (VHb)-encoding gene in transgenic white poplar: plant growth and biomass production, biochemical characterization and cell survival under submergence, oxidative and nitrosative stress conditions // Mol. Breed. 2006. V. 17 (3). P. 201–216.
- Zhang B., Chen M., Zhang X. et al. Laboratory and field evaluation of the transgenic Populus alba × Populus glandulosa expressing double coleopteran-resistance genes // Tree Physiol. 2011. V. 31 (5). P. 567–573.
- Zhao L., Cheng Q. Heterologous expression of Arabidopsis pattern recognition receptor RLP23 increases broad‐spectrum resistance in poplar to fungal pathogens // Mol. Plant Pathol. 2023. V. 24 (1). P. 80–86.
- Zhou X., Dong Y., Zhang Q. et al. Expression of multiple exogenous insect resistance and salt tolerance genes in Populus nigra L. // Front. Plant Sci. 2020. V. 11. 1123.
Supplementary files
