Моноклональные антитела к вариабельному фрагменту Т-клеточного рецептора – на службе у науки и клиники

Обложка

Цитировать

Полный текст

Аннотация

Обобщен недавний прогресс в разработке моноклональных антител, направленных на вариабельный фрагмент Т-клеточного рецептора, с заданным способом воздействия на целевую субгруппу Т-лимфоцитов. Поскольку уникальные субгруппы Т-клеток ответственны за развитие и исход многих социально значимых заболеваний, способность моноклональных антител уничтожать или расширять патогенетически важные семейства Т-клеток представляет большой интерес в клинической практике. Также обсуждается роль уникальных семейств Т-клеток в патогенезе ряда аутоиммунных и инфекционных заболеваний, что создает предпосылки для разработки высокоэффективных таргетных препаратов на основе моноклональных антител к вариабельному фрагменту Т-клеточного рецептора.

Полный текст

Доступ закрыт

Об авторах

В. П. Хохлов

Институт молекулярной биологии им. В.А. Энгельгардта РАН

Автор, ответственный за переписку.
Email: med9000@mail.ru
Россия, Москва

Список литературы

  1. Abe J., Kotzin B., Jujo K. et al. Selective expansion of T cells expressing T-cell receptor variable regions Vβ2 and Vβ8 in Kawasaki disease // PNAS USA. 1992. V. 89 (9). P. 4066–4070.
  2. Acuto O., Fabbi M., Smart J. et al. Purification and NH2-terminal amino acid sequencing of the β subunit of a human T-cell antigen receptor // PNAS USA. 1984. V. 81 (12). P. 3851–3855.
  3. Acuto O., Campen T.J., Royer H.D. et al. Molecular analysis of T cell receptor (Ti) variable region (V) gene expression. Evidence that a single Ti beta V gene family can be used in formation of V domains on phenotypically and functionally diverse T cell populations // J. Exp. Med. 1985. V. 161 (6). P. 1326–1343.
  4. Ali M., Nelson A., Lopez A., Sack D. Updated global burden of cholera in endemic countries // PLoS Negl. Trop. Dis. 2015. V. 9 (6). e0003832.
  5. Alvarez-Lafuente R., Fernandez-Gutierrez B., Jover J. et al. Human parvovirus B19, varicella zoster virus and human herpes virus 6 in temporal artery biopsy specimens of patients with giant cell arteritis: analysis with quantitative real time polymerase chain reaction // Ann. Rheum. Dis. 2005. V. 64 (5). P. 780–782.
  6. Antibodies: a laboratory manual / Eds E. Harlow, D. Lane. N.Y.: Cold Spring Harbor Laboratory, 1988. 726 p.
  7. Arden B., Clark S.P., Kabelitz D., Mak T.W. Human T-cell receptor variable gene segment families // Immunogenetics. 1995. V. 42 (6). P. 455–500.
  8. Bhuiyan T., Rahman M., Trivedi S. et al. Mucosal associated invariant T (MAIT) cells are highly activated in duodenal tissue of humans with Vibrio cholera O1 infection: a preliminary report // PLoS Negl. Trop. Dis. 2022. V. 16 (5). e0010411.
  9. Bigler R.D., Posnett D.N., Chiorazzi N. et al. Stimulation of the subset of normal resting T lymphocytes by a monoclonal antibody to a crossreactive determinant of the human T cell antigen receptor // J. Exp. Med. 1985. V. 161 (6). P. 1450–1463.
  10. Bovay A., Zoete V., Dolton G. et al. T cell receptor alpha variable 12-2 bias in the immunodominant response to Yellow fever virus // Eur. J. Immunol. 2018. V. 48 (2). P. 258–272.
  11. Bowerman N., Falta M., Mack D. et al. Identification of multiple public TCR repertoires in chronic beryllium disease // J. Immunol. 2014. V. 192 (10). P. 4571–4580.
  12. Brack A., Geisler A., Martinez-Taboada V. et al. Giant cell vasculitis is a T cell-dependent disease // Mol. Med. 1997. V. 3 (8). P. 530–543.
  13. Britanova O., Lupyr K., Staroverov D. et al. Targeted depletion of TRBV9+ T cells as immunotherapy in a patient with ankylosing spondylitis // Nat. Med. 2023. V. 29. P. 2731–2736.
  14. Cavallo S. Immune-mediated genesis of multiple sclerosis // J. Transl. Autoimmun. 2020. V. 3. 100039.
  15. Chester K., Hawkins R. Clinical issues in antibody design // Tr. Biotechnol. 1995. V. 13 (8). P. 294–300.
  16. Cogswell D., Gapin L., Tobin H. et al. MAIT cells: partners or enemies in cancer immunotherapy? // Cancers. 2021. V. 13 (7). 1502.
  17. Constantinides M., Link V., Tamoutounour S. MAIT cells are imprinted by the microbiota in early life and promote tissue repair // Science. 2019. V. 366 (6464). eaax6624.
  18. Coppieters K., Dotta F., Amirian N. et al. Demonstration of islet-autoreactive CD8 T cells in insulitic lesions from recent onset and long-term type I diabetes patients // J. Exp. Med. 2012. V. 209 (1). P. 51–60.
  19. Damelang T., Brinkhaus M., Osch T. et al. Impact of structural modifications of IgG antibodies on effector functions // Front. Immunol. 2024. V. 14. 1304365.
  20. Desquenne-Clark L., Esch T., Otvos Jr.L., Heber-Katz E. T-cell receptor peptide immunization leads to enhanced and chronic experimental allergic encephalomyelitis // PNAS USA. 1991. V. 88 (16). P. 7219–7223.
  21. Elliott P., Andersson B., Arbustini E. et al. Classification of the cardiomyopathies: a position statement from the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases // Eur. Heart J. 2008. V. 29 (2). P. 270–276.
  22. Esfandiarei M., McManus B. Molecular biology and pathogenesis of viral myocarditis // Annu. Rev. Pathol. 2008. V. 3. P. 127–155.
  23. Frimpong A., Ofori M., Degoot A. et al. Perturbations in the T cell receptor β repertoire during malaria infection in children: a preliminary study // Front. Immunol. 2022. V. 13. 971392.
  24. Fukazawa R., Kobayashi J., Ayusawa M. et al. JCS/JSCS 2020 guideline on diagnosis and management of cardiovascular sequelae in Kawasaki disease // Circ. J. 2020. V. 84 (8). P. 1348–1407.
  25. Greaves S., Atif S., Fontenot A. Adaptive immunity in pulmonary sarcoidosis and chronic beryllium disease // Front. Immunol. 2020. V. 11. 474.
  26. Gregory G., Robinson T., Linklater S. et al. Global incidence, prevalence and mortality of type 1 diabetes in 2021 with projection to 2040: a modeling study // Lancet. 2022. V. 10 (10). P. 741–760.
  27. Grunewald J., Eklund A. Löfgren’s syndrome: human leukocyte antigen strongly influences the disease course // Am. J. Respir. Crit. Care Med. 2009. V. 179 (4). P. 307–312.
  28. Grunewald J., Janson C., Eklund A. et al. Restricted V alpha 2.3 gene usage by CD4+ T lymphocytes in bronchoalveolar lavage fluid from sarcoidosis patients correlates with HLA-DR3 // Eur. J. Immunol. 1992. V. 22 (1). P. 129–135.
  29. Guittet L., de Boysson H., Cerasuolo D. et al. Whole-country and regional incidences of giant cell arteritis in French continental and overseas territories: a 7-year nationwide database analysis // ACR Open Rheumatol. 2022. V. 4 (9). P. 753–759.
  30. Hackstein CP., Klenerman P. Emerging features of MAIT cells and other unconventional T cell populations in human viral disease and vaccination // Semin. Immunol. 2022. V. 61–64. 101661.
  31. Hannum C., Kappler J., Trowbridge I. et al. Immunoglobulin-like nature of the α-chain of a human T-cell antigen/MHC receptor // Nature. 1984. V. 312 (5989). P. 65–67.
  32. Haugeberg G., Bie R., Nordbø S. Temporal arteritis associated with Chlamydia pneumoniae DNA detected in an artery specimen // J. Rheumatol. 2001. V. 28 (7). P. 1738–1739.
  33. Hsu J., Donahue R., Katragadda M. et al. A T cell receptor β chain-directed antibody fusion molecule activates and expands subsets of T cells to promote antitumor activity // Sci. Transl. Med. 2023. V. 15 (724). eadi0258.
  34. Ikuta K., Ogura T., Shimizu A., Honjo T. Low frequency of somatic mutation in β-chain variable region genes of human T cell receptors // PNAS USA. 1985. V. 82 (22). P. 7701–7705.
  35. Isobe M., Amano K., Arimura Y. et al. JCS 2017 guideline on management of vasculitis syndrome – digest version // Circ. J. 2020. V. 84 (2). P. 299–359.
  36. Jog N., McClain M., Heinlen L. et al. Epstein–Barr virus nuclear antigen 1 (EBNA-1) peptides recognized by adult multiple sclerosis patient sera induce neurologic symptoms in a murine model // J. Autoimmun. 2020. V. 106. 102332.
  37. Kalinina A., Bruter A., Nesterenko L. et al. Generation of TCR α-transduced T cells for adoptive transfer therapy of salmonellosis in mice // STAR Protoc. 2021. V. 2 (1). 100368.
  38. Kanagawa O. In vivo T cell tumor therapy with monoclonal antibody directed to the Vβ chain of T cell antigen receptor // J. Exp. Med. 1989. V. 170 (5). P. 1513–1519.
  39. Kappler J., Kubo R., Haskins J. et al. The mouse T cell receptor: comparison of MHC-restricted receptors on two T cell hybridomas // Cell. 1983. V. 34 (3). P. 727–737.
  40. Kaskow B., Baecher-Allan C. Effector T cells in multiple sclerosis // Cold Spring Harbor Perspect. Med. 2018. V. 8 (4). a029025.
  41. Kaushansky N., Eisenstein M., Zilkha-Falb R., Ben-Nun A. The myelin-associated oligodendrocytic basic protein (MOBP) as a relevant primary target autoantigen in multiple sclerosis // Autoimmun. Rev. 2010. V. 9 (4). P. 233–236.
  42. Kawakami Y., Eliyahu S., Delgado C.H. Cloning of the gene coding for a shared human melanoma antigen recognized by autologous T cells infiltrating into tumor // PNAS USA. 1994. V. 91 (9). P. 3515–3519.
  43. Keller A., Eckle S., Xu W. et al. Drugs and drug-like molecules can modulate the function of mucosal-associated invariant T cells // Nat. Immunol. 2017. V. 18. P. 402–411.
  44. Kotzin B., Karuturi S., Chou Y. et al. Preferential T cell receptor beta-chain variable gene use in myelin basic protein-reactive T cell clones from patients with multiple sclerosis // PNAS USA. 1991. V. 88 (20). P. 9161–9165.
  45. Kumar V., Tabibiazar R., Geysen H., Sercarz E. Immunodominant framework region 3 peptide from TCR Vβ8.2 chain controls murine experimental autoimmune encephalomyelitis // J. Immunol. 1995. V. 154 (4). P. 1941–1950.
  46. Helmick C., Felson D., Lawrence R. et al. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States // Arthritis Rheum. 2008. V. 58 (1). P. 26–35.
  47. Leeansyah E., Boulouis C., Kwa A., Sandberg J. Emerging role for MAIT cells in control of antimicrobial resistance // Tr. Microbiol. 2021. V. 29 (6). P. 504–516.
  48. Lefranc M.-P., Lefranc G. T Cell Receptor FactsBook. San Diego, San Francisco, New York, Boston, London, Sydney, Tokyo: Acad. Press, 2001. 398 p.
  49. Leng T., Akther H., Hackstein CP. et al. TCR and inflammatory signals tune human MAIT cells to exert specific tissue repair and effector functions // Cell Rep. 2019. V. 28 (12). P. 3077–3091.e5
  50. Li B., Li T., Pignon J.C. et al. Landscape of tumor-infiltrating T cell repertoire of human cancers // Nat. Genet. 2016. V. 48 (7). P. 725–732.
  51. Liu R., Oldham R., Teal E. et al. Fc-engineering for modulated effector functions – improving antibodies for cancer treatment // Antibodies. 2020. V. 9 (4). 64.
  52. Liu Z., Cort L., Eberwine R. et al. Prevention of type 1 diabetes in the rat with an allele-specific anti-T-cell receptor antibody // Diabetes. 2012. V. 61 (5). P. 1160–1168.
  53. Loh L., Wang Z., Sant S. et al. Human mucosal-associated invariant T cells contribute to antiviral influenza immunity via IL-18-dependent activation // PNAS USA. 2016. V. 113 (36). P. 10133–10138.
  54. Lopez-Hoyos M., Bartolome-Pacheco M., Blanco R. et al. Selective T cell receptor decrease in peripheral blood T lymphocytes of patients with polymyalgia rheumatic and giant cell arteritis // Ann. Rheum. Dis. 2004. V. 63 (1). P. 54–60.
  55. Lu R.M., Hwang Y.C., Liu I.J. et al. Development of therapeutic antibodies for the treatment of diseases // J. Biomed. Sci. 2020. V. 27 (1). 1.
  56. Marrero I., Aguilera C., Hamm D. et al. High-throughput sequencing reveals restricted TCR Vβ usage and public TCRβ clonotypes among pancreatic lymph node memory CD4+ T cells and their involvement in autoimmune diabetes // Mol. Immunol. 2018. V. 74. P. 82–95.
  57. May E., Dilphy N., Frauendorf E. et al. Conserved TCR beta chain usage in reactive arthritis; evidence for selection by a putative HLA-B-27-associated autoantigen // Tiss. Antigens. 2002. V. 60 (4). P. 299–308.
  58. Meermeier E., Harriff M., Karamooz E., Lewinsohn D. MAIT cells and microbial immunity // Immunol. Cell Biol. 2018. V. 96 (6). P. 607–617.
  59. Middleton D., Menchaca L., Rood H., Komerofsky R. New allele frequency database: http://www.allelefrequencies.net // Tiss. Antigens. 2003. V. 61. P. 403–407.
  60. Mitchell A., Alkanani A., McDaniel K. et al. T cell responses to hybrid insulin peptides prior to type I diabetes development // PNAS USA. 2021. V. 118 (6). e2019129118.
  61. Nakatsugawa M., Yamashita Y., Ochi T. et al. Specific roles of each TCR hemichain in generating functional chain-centric TCR // J. Immunol. 2015. V. 194 (7). P. 3487– 3500.
  62. Nakayama M., Michels A. Using the T cell receptor as a biomarker in type 1 diabetes // Front. Immunol. 2021. V. 12. 777788.
  63. Nakayama M., McDaniel K., Fitzgerald-Miller L. et al. Regulatory vs inflammatory cytokine T-cell responses to mutated insulin peptides in healthy and type I diabetic subjects // PNAS USA. 2015. V. 112 (14). P. 4429–4434.
  64. Nasonov E., Mazurov V., Lila A. et al. Effectiveness and safety of BCD-180, anti-TRBV9+ T-lymphocytes monoclonal antibody in patients with active radiographic axial spondyloarthritis: 36-week results of double-blind randomized placebo-controlled phase II clinical study ELEFTA // Rheumatol. Sci. Pract. 2024. V. 62 (1). P. 65–80.
  65. Newman L., Lloyd J., Daniloff E. The natural history of beryllium sensitization and chronic beryllium disease // Environ. Health Perspect. 1996. V. 104 (Suppl. 5). P. 937–943.
  66. Noutsias M., Rohde M., Göldner K. et al. Expression of functional T-cell markers and T-cell receptor Vbeta repertoire in endomyocardial biopsies from patients presenting with acute myocarditis and dilated cardiomyopathy // Eur. J. Heart Fail. 2011. V. 13 (6). P. 611–618.
  67. Oksenberg J., Panzara M., Begovich A. et al. Selection for T-cell receptor Vβ-Dβ-Jβ gene rearrangements with specificity for a myelin basic protein peptide in brain lesions of multiple sclerosis // Nature. 1993. V. 362. P. 68–70.
  68. Owhashi M., Heber-Katz E. Protection from experimental allergic encephalomyelitis conferred by a monoclonal antibody directed against a shared idiotype on rat T cell receptors specific for myelin basic protein // J. Exp. Med. 1988. V. 168 (6). P. 2153–2164.
  69. Paul S., Pearlman A., Douglass J. et al. TCR beta chain-directed bispecific antibodies for the treatment of T-cell cancers // Sci. Transl. Med. 2021. V. 13 (584). eabd3595.
  70. Perez-Mazliah D., Langhorne J. CD4 T-cell subsets in malaria: TH1/TH2 revisited // Front. Immunol. 2015. V. 5. 671.
  71. Porcelli S., Yockey C., Brenner M., Balk S. Analysis of T cell antigen receptor (TCR) expression by human peripheral blood CD4–8– alpha/beta T cells demonstrates preferential use of several V beta genes and an invariant TCR alpha chain // J. Exp. Med. 1993. V. 178 (1). P. 1–16.
  72. Posnett D.N., Bigler R.D., Bushkin Y. et al. T cell antiidiotypic antibodies reveal differences between two human leukemias // J. Exp. Med. 1984. V. 160 (2). P. 494–505.
  73. Rashu R., Ninkov M., Wardell C. et al. Targeting the MR1-MAIT cell axis improves vaccine efficacy and affords protection against viral pathogens // PLoS Pathog. 2023. V. 19 (6). e1011485.
  74. Richeldi L., Sorrentino R., Saltini C. HLA-DPB1 glutamate 69: a genetic marker of beryllium diseas // Science. 1993. V. 262 (5131). P. 242–244.
  75. Roep B., Peakman M. Diabetogenic T lymphocytes in human type 1 diabetes // Curr. Opin. Immunol. 2011. V. 23 (6). P. 746–753.
  76. Rowen L., Koop B.F., Hood L. The complete 685-kilobase DNA sequence of the human beta T cell receptor locus // Science. 1996. V. 272 (5269). P. 1755–1762.
  77. Rowley A., Baker S., Shulman S. et al. Ultrastructural, immunofluorescence, and RNA evidence support the hypothesis of a “new” virus associated with Kawasaki disease // J. Infect. Dis. 2011. V. 203 (7). P. 1021–1030.
  78. Saltini C., Winestock K., Kirby M. et al. Maintenance of alveolitis in patients with chronic beryllium disease by beryllium-specific helper T cells // N. Engl. J. Med. 1989. V. 320(17). P. 1103–1109.
  79. Samson M., Ly K., Tournier B. et al. Involvement and prognosis value of CD8+ T cells in giant cell arteritis // J. Autoimmun. 2016. V. 72. P. 73–83.
  80. Schmidt J., Smail A., Roche B. et al. Incidence of severe infections and infection-related mortality during the course of giant cell arteritis: a multicenter, prospective, double-cohort study // Arthritis Rheumatol. 2016. V. 68 (6). P. 1477–1482.
  81. Smith T., Maricic I., Ria F. et al. CD8alpha+ dendritic cells prime TCR-peptide-reactive regulatory CD4+FOXP3-T cells // Eur. J. Immunol. 2010. V. 40 (7). P. 1906–1915.
  82. Tolle M. Mosquito-borne diseases // Curr. Probl. Pediatr. Adolesc. Health Care. 2009. V. 39 (4). P. 97–140.
  83. Tran M., Faridi P., Lim J. et al. T cell receptor recognition of hybrid insulin peptides bound to HLA-Dq8 // Nat. Commun. 2021. V. 12 (1). P. 1–13.
  84. Urban J., Kumar V., Kono D. et al. Restricted use of T cell receptor V genes in murine autoimmune encephalomyelitis raises possibilities for antibody therapy // Cell. 1988. V. 54 (4). P. 577–592.
  85. Vandenbark A., Hashim G., Offner H. Immunization with a synthetic T cell receptor V region peptide protects against experimental autoimmune encephalomyelitis // Nature. 1989. V. 341 (6242). P. 541–544.
  86. Walker L., Tharmalingam H., Klenerman P. The rise and fall of MAIT cells with age // Scand. J. Immunol. 2014. V. 80 (6). P. 462–463.
  87. Wang C.Y., Bushkin Y., Pica R. et al. Stimulation and expansion of a human T-cell subpopulation by a monoclonal antibody to T-cell receptor molecule // Hybridoma. 1986. V. 5 (3). P. 179–190.
  88. Wei S., Charmley P., Robinson M.A., Concannon P. The extent of the human germline T-cell receptor V beta gene segment repertoire // Immunogenetics. 1994. V. 40 (1). P. 27–36.
  89. Weyand C., Schönberger J., Oppitz U. et al. Distinct vascular lesions in giant cell arteritis share identical T cell clonotypes // J. Exp. Med. 1994. V. 179 (3). P. 951–960.
  90. Wilson R.K., Lai E., Concannon P. et al. Structure, organization and polymorphism of murine and human T-cell receptor alpha and beta chain gene families // Immunol. Rev. 1988. V. 101. P. 149–172.
  91. Yong V. Differential mechanisms of action of interferon-beta and glatiramer acetate in MS // Neurology. 2002. V. 59 (6). P. 802–808.
  92. Zaller D., Osman G., Kanagawa O., Hood L. Prevention and treatment of murine experimental allergic encephalomyelitis with T cell receptor Vβ-specific antibodies // J. Exp. Med. 1990. V. 171 (6). P. 1943–1955.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Использование анти-Vα/β TCR mAbs в научных исследованиях и клинической диагностике (изображение создано с помощью Servier Medical Art). ГКГС – главный комплекс гистосовместимости.

Скачать (426KB)
3. Рис. 2. Гуманизация молекулы IgG (изображение создано с помощью Servier Medical Art).

Скачать (141KB)
4. Рис. 3. Строение и механизм действия STAR0602. Под действием mAb STAR0602 Vβ6+/Vβ10+-TILs начинают активно пролиферировать и лизировать клетки опухоли (изображение создано с помощью Servier Medical Art).

Скачать (338KB)
5. Рис. 4. Схема мутации N297A. В области СН2 находится один N-связанный участок гликозилирования, содержащий углеводную группу, присоединенную к Аспарагину 297. Гликан N297 играет центральную роль в связывании антител с рецепторами фагоцитов FcγRs, а также с компонентом комплемента C1q. Замена аспарагина 297 на другую аминокислоту приводит к удалению гликана, в результате чего блокируется связывание антител со всеми FcγRs и с C1q, за исключением высокоаффинного FcγRI, который сохраняет незначительную способность к связыванию после дегликозилирования. В результате происходит ослабление ключевых эффекторных функций ADCC и CDC (Liu et al., 2020; Damelang et al., 2024) (изображение создано с помощью Servier Medical Art).

Скачать (250KB)
6. Рис. 5. Строение и механизм действия анти-TRBV5-5 и анти-TRBV12 BsAbs. (а) Антитела сконструированы путем слияния двух одноцепочечных вариабельных фрагментов (scFv), один из которых обладает специфичностью либо к TRBV5-5, либо к TRBV12, а второй – к ε-субъединице молекулы CD3. Последовательности scFv, специфичные к TRBV5-5 и к TRBV12, получены из первоначально разработанных антител к вариабельным фрагментам TCRs семейств TRBV5-5 и TRBV12. (б) Двунаправленное убийство – взаимное уничтожение таргетной и эффекторной клеток (изображение создано с помощью Servier Medical Art).

Скачать (390KB)

© Российская академия наук, 2025