Физически адсорбированные покрытия на основе хитозана для электрофоретического разделения биологически активных веществ

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Сформированы покрытия внутренних стенок кварцевого капилляра на основе катионного высокомолекулярного хитозана со степенью деацетилирования 95%. Изучена зависимость скорости электроосмотического потока от рН фонового электролита, и проведена оценка стабильности покрытия при воздействии различных растворителей. Результаты сопоставлены с другим катионным покрытием на основе поли(диаллилдиметиламмоний хлорида) (ПДАДМАХ). Показано, что при разделении аминокислот, катехоламинов и органических кислот сформированные покрытия на основе хитозана незначительно уступают в эффективности покрытиям из ПДАДМАХ, но обеспечивают более высокое разрешение исследуемых биологически активных аналитов. Установлено, что хитозан на внутренних стенках кварцевого капилляра способствует повышению энантиоселективности при разделении энантиомеров β-блокаторов (карведилола, пропранолола, соталола) при наличии в фоновом электролите (2-гидроксипропил)-β-циклодекстрина, а также нестероидных противовоспалительных веществ (кетопрофена и кеторалака) с использованием в качестве второго хирального селектора ванкомицина.

Полный текст

Доступ закрыт

Об авторах

Е. А. Колобова

Институт химии Санкт-Петербургского государственного университета

Автор, ответственный за переписку.
Email: ekatderyabina@mail.ru
Россия, Университетский просп., 26, Петергоф, Санкт-Петербург, 198504

Э. Р. Зиангирова

Институт химии Санкт-Петербургского государственного университета

Email: ekatderyabina@mail.ru
Россия, Университетский просп., 26, Петергоф, Санкт-Петербург, 198504

Е. В. Соловьева

Институт химии Санкт-Петербургского государственного университета

Email: ekatderyabina@mail.ru
Россия, Университетский просп., 26, Петергоф, Санкт-Петербург, 198504

Л. А. Карцова

Институт химии Санкт-Петербургского государственного университета

Email: ekatderyabina@mail.ru
Россия, Университетский просп., 26, Петергоф, Санкт-Петербург, 198504

Список литературы

  1. Карцова Л.А., Макеева Д.В., Бессонова Е.А. Современное состояние метода капиллярного электрофореза // Журн. аналит. химии. 2020. Т. 12. № 75. С. 1059. https://doi.org/10.31857/S0044450220120087 (Kartsova L.A., Makeeva D.V., Bessonova E.A. Current status of capillary electrophoresis // J. Anal. Chem. 2020. V. 12. № 75. P. 1497. https://doi.org/10.1134/S1061934820120084)
  2. Voeten R.L. C., Ventouri I.K., Haselberg R., Somsen G.W. Capillary Electrophoresis: Trends and Recent Advances // Anal. Chem. 2018. V. 90. № 3. P. 1464. https://doi.org/10.1021/acs.analchem.8b00015
  3. Gao Z., Zhong W. Recent (2018–2020) development in capillary electrophoresis // Anal. Bioanal. Chem. 2022. V. 414. № 1. P. 115. https://doi.org/10.1007/s00216-021-03290-y
  4. Hajba L., Guttman A. Recent advances in column coatings for capillary electrophoresis of proteins // TrAC, Trends Anal. Chem. 2017. V. 90. P. 38. https://doi.org/10.1016/j.trac.2017.02.013
  5. Карцова Л.А., Кравченко А.В., Колобова Е.А. Ковалентные покрытия кварцевых капилляров для электрофоретического определения биологически активных аналитов // Журн. аналит. химии. 2019. Т. 74. № 8. С. 563. https://doi.org/10.31857/S0044450221090061 (Kartsova L.A., Kravchenko A.V., Kolobova E.A. Covalent coatings of quartz capillaries for the electrophoretic determination of biologically active analytes // J. Anal. Chem. 2019. V. 74. № 8. P. 729. https://doi.org/10.1134/S1061934819080100)
  6. Znaleziona J., Petr J., Knob R. Dynamic coating agents in CE // Chromatographia. 2008. V. 67. P. 5. https://doi.org/10.1365/s10337-007-0509-y
  7. Robb C.S. Applications of physically adsorbed polymer coatings in capillary electrophoresis // J. Liq. Chromatogr. Relat. Technol. 2007. V. 30. № 5–7. P. 729. https://doi.org/10.1080/10826070701191029
  8. Guo X.F., Guo X.M., Wang H., Zhang H.S. One step physically adsorbed coating of silica capillary with excellent stability for the separation of basic proteins by capillary zone electrophoresis // Talanta. 2015. V. 144. P. 110. https://doi.org/10.1016/j.talanta.2015.05.080
  9. McGettrick J.R., Palmer C.P. Evaluation of poly([2-(acryloyloxy)ethyl]trimethylammonium chloride) cationic polymer capillary coating for capillary electrophoresis and electrokinetic chromatography separations // J. Sep. Sci. 2017. V. 40. № 20. P. 4060. https://doi.org/10.1002/jssc.201700461
  10. Duša F., Witos J., Karjalainen E., Viitala T., Tenhu H., Wiedmer S.K. Novel cationic polyelectrolyte coatings for capillary electrophoresis // Electrophoresis. 2016. V. 37. № 2. P. 363. https://doi.org/10.1002/elps.201500275
  11. Sola L., Chiari M. Tuning capillary surface properties by charged polymeric coatings // J. Chromatogr. A. 2015. V. 1414. P. 173. https://doi.org/10.1016/j.chroma.2015.08.032
  12. Zandkarimi M., Shafaati A., Foroutan S.M., Lucy C.А. Improvement of electrophoretic enantioseparation of amlodipine by polybrene // Iran. J. Pharm. Res. 2012. V. 11. № 1. P. 129.
  13. Pei L., Lucy C.A. Insight into the stability of poly(diallydimethylammoniumchloride) and polybrene poly cationic coatings in capillary electrophoresis // J. Chromatogr. A. 2014. V. 1365. P. 226. https://doi.org/10.1016/j.chroma.2014.09.013
  14. Ullsten S., Zuberovic A., Bergquist J. Adsorbed cationic polymer coatings for enhanced capillary electrophoresis/mass spectrometry of proteins // Methods Mol. Biol. 2008. V. 384. P. 631. https://doi.org/10.1007/978-1-59745-376-9_25
  15. Huhn C., Ramautar R., Wuhrer M., Somsen G.W. Relevance and use of capillary coatings in capillary electrophoresis-mass spectrometry // Anal. Bioanal. Chem. 2010. V. 396. № 1. P. 297. https://doi.org/10.1007/s00216-009-3193-y
  16. Pattky M., Barkovits K., Marcus K., Weiergräber O.H., Huhn C. Statically adsorbed coatings for high separation efficiency and resolution in CE–MS peptide analysis: Strategies and implementation // Methods Mol. Biol. 2016. V. 1483. P. 53. https://doi.org/10.1007/978-1-4939-6403-1_4
  17. Ribeiro J.C. V., Vieira R.S., Melo I.M., Araújo V.M. A., Lima V. Versatility of chitosan-based biomaterials and their use as scaffolds for tissue regeneration // Sci. World J. 2017. V. 2017. Article 8639898. https://doi.org/10.1155/2017/8639898
  18. Sahariah P., Másson M. Antimicrobial chitosan and chitosan derivatives: A review of the structure-activity relationship // Biomacromolecules. 2017. V. 18. № 11. P. 3846. https://doi.org/10.1021/acs.biomac.7b01058
  19. Thevarajah J.J., Van Leeuwen M. P., Cottet H., Castignolles P., Gaborieau M. Determination of the distributions of degrees of acetylation of chitosan // Int. J. Biol. Macromol. 2017. V. 95. P. 40. https://doi.org/10.1016/j.ijbiomac.2016.10.056
  20. Yao Y.J., Li S.F. Y. Capillary zone electrophoresis of basic proteins with chitosan as a capillary modifier // J. Chromatogr. A. 1994. V. 663. № 1. P. 97. https://doi.org/10.1016/0021-9673(94)80500-8
  21. Kumar M.N., Muzzarelli R.A., Muzzarelli C., Sashiwa H., Domb A.J. Chitosan chemistry and pharmaceutical perspectives // Chem. Rev. 2004. V. 104. № 12. Р. 6017. https://doi.org/10.1021/cr030441b
  22. Huang X., Wang Q., Huang B. Preparation and evaluation of stable coating for capillary electrophoresis using coupled chitosan as coated modifier // Talanta. 2006. V. 69. Р. 463. https://doi.org/10.1016/j.talanta.2005.10.015
  23. Jia Y., Cao J., Zhou J., Zhou P. Methyl chitosan coating for glycoform analysis of glycoproteins by capillary electrophoresis // Electrophoresis. 2020. V. 41. № 9. P. 729. https://doi.org/10.1002/elps.201900333
  24. Porpiglia N.M., Tagliaro I., Pellegrini B., Alessi A., Tagliaro F., Russo L. et al. Chitosan derivatives as dynamic coatings for transferrin glycoform separation in capillary electrophoresis // Int. J. Biol. Macromol. 2024. V. 254. Article 127888. https://doi.org/10.1016/j.ijbiomac.2023.127888
  25. Vitali L., Della Betta F., Costa A.C., Vaz F.A., Oliveira M.A., Vistuba J.P. et al. New multilayer coating using quaternary ammonium chitosan and κ-carrageenan in capillary electrophoresis: Application in fast analysis of betaine and methionine // Talanta. 2014. V. 123. P. 45. https://doi.org/10.1016/j.talanta.2014.01.047
  26. Zhou L.P., Chen Y., Hu H., Yu B., Wang G.W., Cong H.L. Novel diazoresin/carboxymethyl chitosan capillary coating for the analysis of proteins by capillary electrophoresis // Ferroelectrics. 2018. V. 529. № 1. P. 24. https://doi.org/10.1080/00150193.2018.1448184
  27. Nishi H., Kuwahara Y. Enantiomer separation by capillary electrophoresis utilizing noncyclic mono-, oligo- and polysaccharides as chiral selectors // J. Biochem. Biophys. Methods. 2001. V. 48. № 2. P. 89. https://doi.org/10.1016/s0165-022x(01)00142-7
  28. Yu R.B., Quirino J.P. Chiral selectors in capillary electrophoresis: Trends during 2017–2018 // Molecules. 2019. V. 24. № 6. Article 1135. https://doi.org/10.3390/molecules24061135
  29. Буданова Н.Ю., Шаповалова Е.Н., Шпигун О.А. Изучение возможности использования хитозана в капиллярном электрофорезе // Вестн. Моск. ун-та. Сер. 2. Химия. 2006. Т. 47. №3. С. 177–181. (Budanova N., Shapovalova E., Shpigun O. Study of possible application of chitosan in capillary electrophoresis // Mosc. Univ. Chem. Bull. 2006. V. 61. P. 20.)
  30. Prokhorova A.F., Kuznetsov M.A., Shapovalova A.N., Staroverov S.M., Shpigun O.A. Enantioseparations of aromatic carboxylic acid by capillary electrophoresis using eremomycin as a chiral selector in a chitosan-modified capillary // Procedia Chem. 2010. V. 2. P. 9. https://doi.org/10.1016/j.proche.2009.12.004
  31. Liu Q., Lin F., Hartwick R.A. Poly(diallyldimethylammonium chloride) as a cationic coating for capillary electrophoresis // J. Chromatogr. Sci. 1997. V. 35. № 3. P. 126. https://doi.org/10.1093/chromsci/35.3.126
  32. Tseng W.L., Chen S.M., Hsu C.Y., Hsieh M.M. On-line concentration and separation of indolamines, catecholamines, and metanephrines in capillary electrophoresis using high concentration of poly(diallyldimethylammonium chloride) // Anal. Chim. Acta. 2008. V. 613. № 1. P. 108. https://doi.org/10.1016/j.aca.2008.02.049
  33. Szabó Z.I., Benkő B.M., Bartalis-Fábián Á., Iványi R., Varga E., Szőcs L., Tóth G. Chiral separation of Apremilast by capillary electrophoresis using succinyl-β-cyclodextrin—reversal of enantiomer elution order by cationic capillary coating // Molecules. 2023. Т. 28. № 8. Article 3310. https://doi.org/10.3390/molecules28083310
  34. Nehmé R., Perrin C., Cottet H., Blanchin M.D., Fabre H. Stability of capillaries coated with highly charged polyelectrolyte monolayers and multilayers under various analytical conditions – Application to protein analysis // J. Chromatogr. A. 2011. V. 1218. № 22. Р. 3537. https://doi.org/10.1016/j.chroma.2011.03.040
  35. Kamande M.W., Kapnissi C.P., Zhu X., Akbay C., Warner I.M. Open-tubular capillary electrochromatography using a polymeric surfactant coating // Electrophoresis. 2003. V. 24. № 6. Р. 945. https://doi.org/10.1002/elps.200390137
  36. Qu Q., Liu D., Mangelings D., Yang C., Hu X. Permanent gold nanoparticle coatings on polyelectrolyte multilayer modified capillaries for open-tubular capillary electrochromatography // J. Chromatogr. A. 2010. V. 1217. № 42. P. 6588. https://doi.org/10.1016/j.chroma.2010.08.057
  37. Neiman B., Grushka E., Lev O. Use of gold nanoparticles to enhance capillary electrophoresis // Anal. Chem. 2001. V. 73. № 21. Р. 5220. https://doi.org/10.1021/ac0104375
  38. Dhellemmes L., Leclercq L., Höchsmann A., Neusüß C., Biron J.P., Roca S., Cottet H. Critical parameters for highly efficient and reproducible polyelectrolyte multilayer coatings for protein separation by capillary electrophoresis // J. Chromatogr. A. 2023. V. 1695. Article 463912. https://doi.org/10.1016/j.chroma.2023.463912
  39. Макеева Д.В., Антипова К.С., Соловьева Е.В., Моргачева В.П., Колобова Е.А., Карцова Л.А. Полислойные покрытия на основе стабилизированных цитратом наночастиц золота и полидиаллилдиметиламмоний хлорида для электрофоретического разделения карбоновых кислот // Журн. аналит. химии. 2023. Т. 78. № 3. С. 241. https://doi.org/10.31857/S0044450223030088 (Makeeva D.V., Antipova K.S., Solovyeva E.V., Morgacheva V.P., Kolobova E.A, Kartsova L.A. Multilayer coatings based on citrate-stabilized gold nanoparticles and polydiallyldimethylammonium chloride for the electrophoretic separation of carboxylic acids // J. Anal. Сhem. 2023. V. 78. № 3. P. 241. https://doi.org/1010.1134/S1061934823030085)
  40. Моргачева В.П., Макеева Д.В., Соловьева Е.В., Колобова Е.А., Карцова Л.А. Новые подходы к формированию покрытий на основе альбумина и наночастиц золота для хирального разделения методом капиллярного электрофореза // Аналитика и контроль. 2023. Т. 27. № 1. С. 21. https://doi.org/1010.15826/analitika.2023.27.1.002
  41. Makeeva D., Morgacheva V., Kolobova E., Solovyeva E., Kartsova L. Multilayer coatings based on gold nanoparticles and polymers with bovine serum albumin as a functional layer for the chiral separation in capillary electrochromatography // J. Sep. Sci. 2024. V. 47. № 2. Article e2300864. https://doi.org/10.1002/jssc.202300864
  42. Pak C., Marriott P.J., Carpenter P.D., Amiet R.G. Enantiomeric separation of propranolol and selected metabolites by using capillary electrophoresis with hydroxypropyl-beta-cyclodextrin as chiral selector // J. Chromatogr. 1998. V. 793. P. 357. https://doi.org/10.1016/s0021-9673(97)00919-9
  43. Hancu G., Cârje A., Iuga I., Fülöp I., Szabó Z.I. Cyclodextrine screening for the chiral separation of carvedilol by capillary electrophoresis // Iran. J. Pharm. Res. 2015. V. 14. P. 425.
  44. Колобова Е.А., Карцова Л.А., Алопина Е.В., Смирнова Н.А. Разделение энантиомеров тирозина, триптофана и β-блокаторов методом капиллярного электрофореза с участием аминокислотной ионной жидкости 1-бутил-3-метилимидазолий L-пролинат [C4MIM][L-PRO] в качестве хирального селектора // Аналитика и контроль. 2018. Т. 22. № 1. С. 51. https://doi.org/1010.15826/analitika.2018.22.1.004
  45. Podar A., Oprean R., Suciu Ş. Review – Recent enantiomer separation strategies of nonsteroidal anti-inflammatory drugs (NSAIDs) by capillary electrophoresis // Farmacia. 2016. V. 64. № 2. P. 159.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Схема 1. Структура хитина/хитозана. n – количество повторяющихся единиц глюкозамина, m – количество повторяющихся единиц ацетилглюкозамина, n + m – степень полимеризации, n / (m + n) – степень деацетилирования. Когда n превышает 50% от общего количества звеньев, полимер называется хитозаном [17].

Скачать (63KB)
3. Рис. 1. Зависимости электрофоретической подвижности ЭОП (µЭОП) от рН фонового электролита: 1 – непокрытый капилляр; 2 – капилляр, модифицированный ПДАДМАХ [39]; 3 – капилляр с покрытием на основе хитозана.

Скачать (61KB)
4. Рис. 2. СЭМ-снимки поперечного среза капилляра с покрытием (а), (б) на основе хитозана и (в) ПДАДМАХ, полученные при различном увеличении с масштабной риской: (а) 2 мкм; (б), (в) 200 нм. Прибор: Zeiss Merlin, изображение во вторичных электронах.

Скачать (118KB)
5. Рис. 3. Электрофореграммы модельной смеси органических кислот: (а) капилляр, модифицированный ПДАДМАХ; (б) капилляр, модифицированный хитозаном. Фоновый электролит: 10 мМ бензойная кислота, 1 мМ ЭДТА, 10 мМ ДЭА. Модельная смесь карбоновых кислот 25 мкг/мл: 1 – щавелевая, 2 – муравьиная, 3 – винная, 4 – лимонная, 5 – яблочная, 6 – молочная, 7 – янтарная, 8 – уксусная, 9 – пропионовая, 10 – масляная.

Скачать (67KB)
6. Рис. 4. Электрофореграммы модельной смеси аминокислот и катехоламинов (50 мкг/мл): (а) немодифицированный капилляр; (б) капилляр, модифицированный хитозаном; (в) капилляр, модифицированный ПДАДМАХ. Фоновый электролит: 10 мМ фосфатный буферный раствор с рН 2.0. Аналиты: 1 – DOPA, 2 – Tyr, 3 – Phe, 4 – Trp, 5 – E, 6 – NMN, 7 – NE, 8 – 3-MT, 9 – DA.

Скачать (68KB)
7. Рис. 5. Электрофореграммы модельной смеси β-блокаторов на различных капиллярах: (а)–(в) капилляр, модифицированный хитозаном; (г), (д) немодифицированный капилляр; (е) капилляр с покрытием на основе ПДАДМАХ. Фоновый электролит: (а), (г) 25 мМ фосфатный буферный раствор (ФБР) с рН 2.0; (б) 25 мМ ФБР с рН 2.0, 0.01 мас. % хитозана; (в), (д), (е) 25 мМ ФБР с рН 2.0, 5 мМ ГП-β-ЦД. Аналиты: 1 – соталол, 2 – пропранолол, 3 – карведилол.

Скачать (144KB)
8. Рис. 6. Электрофореграммы модельной смеси нестероидных противовоспалительных средств (25 мкг/мл). Капель-105М; капилляр, модифицированный хитозаном. Фоновый электролит: (а) 25 мМ фосфатный буферный раствор (ФБР) с рН 6.4; (б) 25 мМ ФБР с рН 6.4, 0.01 мас. % хитозана; (в) 25 мМ ФБР с рН 6.4, 0.5 мМ ГП-β-ЦД; (г) 25 мМ ФБР с рН 6.4, 0.5 мМ β-ЦД; (д) 25 мМ ФБР с рН 4.2, 2.5 мМ ванкомицин, 10 об. % метанола; (е) немодифицированный капилляр, 25 мМ ФБР с рН 4.2, 2.5 мМ ванкомицин, 10 об. % метанола. Аналиты: 1 – кеторолак, 2 – кетопрофен, 3 – ибупрофен.

Скачать (114KB)
9. Рис. 7. Зависимости разрешения (Rs) энантиомеров (1) кеторолака и (2) кетопрофена от состава фонового электролита. Условия: капилляр, модифицированный хитозаном; фоновый электролит: (а) 10–25 мМ ФБР с рН 4.2, 1 мМ ванкомицин; (б) 25 мМ ФБР с рН 4.2, 1 мМ ванкомицин, 0–20 об. % метанола; (в) 25 мМ ФБР с рН 4.2, 0–5 мМ ванкомицин, 10 об. % метанола. Аналиты: 1 – кеторолак, 2 – кетопрофен.

Скачать (110KB)

© Российская академия наук, 2025