Vibrationally Excited Ozone in Kinetics of O/N/Ar Mixtures after Ozone Photolysis

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The developed kinetics of the vibrationally excited states of ozone (with excitation of up to five vibrational quanta), built into the chemical kinetics of O/N/Ar mixtures, was used to model the series of photolysis experiments of V.N. Azyazov et al. The experimental and calculated dynamics of O3 and O2(a1∆) in various O3/O2/Ar mixtures were compared. The dynamics of chemiluminescent radiation of NO∗2NO2∗ in the titration technique and the applicability of this technique to measuring the dynamics of O atoms in an O3/O2/N2O/Ar mixture were considered. The dynamics of various states of O3(v1,v2,v3) after ozone photolysis was analyzed in detail. The role of these states in the acceleration of the chemical conversion of oxygen components and nitrogen oxides, occurring with competition with ozone vibrational relaxation, was considered.

Sobre autores

Yu. Mankelevich

Skobeltsyn Institute of Nuclear Physics, Moscow State University

Email: ymankelevich@mics.msu.su
119234, Moscow, Russia

T. Rakhimova

Skobeltsyn Institute of Nuclear Physics, Moscow State University

Email: dvoloshin@gw.mics.msu.su
119234, Moscow, Russia

D. Voloshin

Skobeltsyn Institute of Nuclear Physics, Moscow State University

Email: dvoloshin@gw.mics.msu.su
119234, Moscow, Russia

A. Chukalovskii

Skobeltsyn Institute of Nuclear Physics, Moscow State University

Autor responsável pela correspondência
Email: dvoloshin@gw.mics.msu.su
119234, Moscow, Russia

Bibliografia

  1. Kaufmann M., Gil-López S., López-Puertas M. et al. // Journal of Atmospheric and Solar-Terrestrial Physics. 2006. V. 68. № 2. P. 202.
  2. Vlasov M., Klopovsky K., Lopaev D. et al. // Cosmic Research. 1997. V. 35. № 3. P. 219.
  3. Azyazov V.N., Heaven M.C. // International Journal of Chemical Kinetics. 2014. V. 47. № 2. P. 93.
  4. Торбин А.П., Першин А.А., Азязов В.Н. // Физика и электроника. Изв. Самарск. научн. центра РАН. 2014. V. 16. № 4. P. 17.
  5. Першин А.А., Торбин А.П., Хэвен М. и др. // Краткие сообщения по физике Физического института им. П.Н. Лебедева РАН. 2015. V. 12. P. 74.
  6. Azyazov V.N., Mikheyev P., Postell D. et al. // Chem.Phys. Lett. 2009. V. 482. № 1–3. P. 56.
  7. Torbin A.P., Mikheyev P.A., Pershin A.A. et al. // “Molecular Singlet Delta Oxygen Quenching Kinetics in the EOIL System” SPIE Proceedings 2015/02/03 2015
  8. Lopaev D.V., Malykhin E.M., Zyryanov S.M. // Journal of Physics D: Applied Physics. 2010. V. 44. № 1. P. 015202.
  9. Marinov D., Guerra V., Guaitella O. et al. // Plasma Sources Science and Technology. 2013. V. 22. № 5. P. 055018.
  10. Ellerweg D., von Keudell A., Benedikt J. // Plasma Sources Science and Technology. 2012. V. 21. № 3. P. 034019.
  11. Booth J.-P., Guaitella O., Baratte E. et al. // Plasma Sources Sci. Technol. In print. 2022.
  12. Klopovskii K., Kovalev A., Lopaev D. et al. // J. Exp. Theor. Phys. 1995. V. 80. P. 603.
  13. Klopovskii K., Popov N., Proshina O. et al. // Plasma Physics Reports. 1997. V. 23. P. 165.
  14. Kogelschatz U. // Plasma Chemistry and Plasma Processing. 2003. V. 23. № 1. P. 1.
  15. Самойлович В.Г., Гибалов В.И., Козлов К.В. Физическая химия барьерного разряда. М.: Изд-во МГУ, 1989.
  16. Mikheyev P.A., Demyanov A.V., Kochetov I.V. et al. // Plasma Sources Science and Technology. 2020. V. 29. № 1. P. 015012.
  17. Зосимов А.В., Лунин В.В., Самойлович В.Г. и др. // Журн. физ.химии. 2016. V. 90. № 8. P. 1279.
  18. Манкелевич Ю.А., Поройков А.Ю., Рахимова Т.В. и др. // Журн. физ. химии. 2016. V. 90. № 9. P. 1421.
  19. Манкелевич Ю.А., Воронина Е.Н., Поройков А.Ю. и др. // Физика плазмы. 2016. V. 42. № 10. P. 912.
  20. von Rosenberg C.W., Trainor D.W. // J. Chem. Phys. 1974. V. 61. № 6. P. 2442.
  21. Rawlins W.T., Armstrong R.A. // J. Chem. Phys. 1987. V. 87. № 9. P. 5202.
  22. Steinfeld J.I., Adler-Golden S.M., Gallagher J.W. // J. Phys. and Chem. Ref. Data. 1987. V. 16. № 4. P. 911.
  23. Rawlins W.T. // J. Geophys. Res. 1985. V. 90. № A12. P. 12283.
  24. Booth J.P, Chatterjee A., Guaitella O. et al. // Plasma Sources Sci. Technol. 2022. V. 31. № 6. P. 065012.
  25. Braginskiy O.V., Vasilieva A.N., Klopovskiy K.S. et al. // J. Physics D: Applied Physics. 2005. V. 38. № 19. P. 3609.
  26. Ali A.A., Ogryzlo E.A., Shen Y.Q. et al. // Canad. J. Physics. 1986. V. 64. № 12. P. 1614.
  27. Castle K.J., Black L.A., Pedersen T.J. // J. Phys.Chem. A. 2014. V. 118. № 25. P. 4548.
  28. Rawlins W.T., Caledonia G.E., Armstrong R.A. // J. Chem. Phys. 1987. V. 87. № 9. P. 5209.
  29. Baulch D.L., Cox R.A., Hampson R.F. et al. // J. Phys. and Chem. Ref. Data. 1980. V. 9. № 2. P. 295.
  30. Zeninari V., Tikhomirov B.A., Ponomarev Y.N. et al. // J. Chem. Phys. 2000. V. 112. № 4. P. 1835.
  31. Baulch D.L., Cox R.A., Hampson R.F. et al. // J. Phys. and Chem. Ref. Data. 1984. V. 13. № 4. P. 1259.
  32. Kurylo M.J., Braun W., Kaldor A. et al. // J. Photochem. 1974. V. 3. № 1. P. 71.
  33. Nikitin E.E., Umanskii S.Y. Theory of Slow Atomic Collisions. Springer Berlin Heidelberg, 1984.
  34. Лунин В.В., Попович М.П., Ткаченко С.Н. Физическая химия озона. М.: Изд-во МГУ, 1998. 478 с.
  35. Ellis D.M., McGarvey J.J., McGrath W.D. // Nature Physical Science. 1971. V. 229. № 5. P. 153.
  36. Manion J.A., Huie R.E, Levin R.D. et al. // NIST Chemical Kinetics Database, NIST Standard Reference Database 17, Version 7.0 (Web Version), Release 1.6.8, Data version 2015.09: National Institute of Standards and Technology, Gaithersburg, Maryland, 20899-8320 2015.
  37. Atkinson R., Baulch D.L., Cox R.A. et al. // J. Phys. and Chem. Ref. Data. 1997. V. 26. № 3. P. 521.
  38. Schurath U., Lippmann H.H., Jesser B. // Berichte der Bunsengesellschaft für Physikalische Chemie. 1981. V. 85. № 8. P. 807.
  39. Savarino J., Bhattacharya S.K., Morin S. et al. // J. Chem. Phys. 2008. V. 128. № 19. P. 194303.
  40. Hui K.K., Cool T.A. // J. Chem. Phys. 1978. V. 68. № 3. P. 1022.
  41. Gudem M., Hazra A. // J. Phys.Chem. A. 2018. V. 123. № 4. P. 715.
  42. Adler-Golden S.M. // J. Phys.Chem. 1989. V. 93. № 2. P. 691.
  43. Fontijn A., Meyer C.B., Schiff H.I. // J. Chem. Phys. 1964. V. 40. № 1. P. 64.
  44. Clough P.N., Thrush B.A. // Trans. Farad. Soc. 1967. V. 63. P. 915.
  45. Greaves J.C., Garvin D. // The Journal of Chemical Physics. 1959. V. 30. № 1. P. 348.
  46. Tanaka Y., Shimayu M. // J. Sci. Research Inst. (Tokyo). 1949. V. 43. P. 241.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (94KB)
3.

Baixar (423KB)
4.

Baixar (542KB)
5.

Baixar (127KB)
6.

Baixar (207KB)
7.

Baixar (192KB)

Declaração de direitos autorais © Ю.А. Манкелевич, Т.В. Рахимова, Д.Г. Волошин, А.А. Чукаловский, 2023