Моделирование геометрии полиенов в основном электронном состоянии

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Рассмотрена точность описания геометрии полиенов в их основном электронном состоянии различными методами. Для достижения высокой точности предложено использовать метод SCS-MP2 с учетом корреляции всех электронов, включая остовные, и с использованием атомного базиса cc-pwCVTZ. Показано, что при использовании этого подхода ошибки в длинах C–C-связей не превышают 0.003 Å. Использование приближений RIJCOSX и DLPNO ускоряет расчеты без значимого увеличения ошибок длин связей, но позволяет использовать предложенный подход для описания таких крупных систем как каротиноиды.

Texto integral

Acesso é fechado

Sobre autores

В. Поддубный

Московский государственного университета имени М. В. Ломоносова

Autor responsável pela correspondência
Email: vvpoddubnyy@gmail.com

Химический факультет

Rússia, 119991, Москва

И. Глебов

Московский государственного университета имени М. В. Ломоносова

Email: vvpoddubnyy@gmail.com

Химический факультет

Rússia, 119991, Москва

Bibliografia

  1. Frank H.A., Cogdell R.J. // Photochem Photobiol. 1996. V. 63. P. 257. https://doi.org/10.1111/j.1751-1097.1996.tb03022.x
  2. Ruban A.V. // Plant Physiol. 2016. V. 170. P. 1903. https://doi.org/10.1104/pp.15.01935
  3. Wehling A., Walla P.J. // Photosynth Res. 2006. V. 90. P. 101. https://doi.org/10.1007/s11120-006-9088-2
  4. Kozlov M.I, Poddubnyy V.V. // J. Phys. Chem. B. 2020. V.124. P. 5780. https://doi.org/10.1021/acs.jpcb.0c02511
  5. Khokhlov D., Belov A. // J. Phys. Chem. A. 2022. V.126. P. 4376. https://doi.org/10.1021/acs.jpca.2c02485
  6. Harmony M.D. // J. Chem. Phys. 1990. V. 93. P. 7522. https://doi.org/10.1063/1.459380
  7. Puzzarini C., Taylor P.R. // J. Chem. Phys. 2005. V. 122. P. 54315. http://dx.doi.org/10.1063/1.1830437
  8. Craig N.C., Demaison J., Groner P., et al. // J. Phys. Chem. A. 2015. V. 119. P. 195. http://dx.doi.org/10.1021/jp510237h
  9. Feller D., Craig N.C. // Ibid. 2009. V. 113. P. 1601. http://dx.doi.org/10.1021/jp8095709
  10. Barborini M., Guidoni L. // J. Chem. Theory Comput. 2015. V. 11. P. 508. https://doi.org/10.1021/ct501157f
  11. Kupka T., Buczek A., Broda M.A, et al. // J. Mol. Model. 2016. V. 22. P. 101. http://dx.doi.org/10.1007/s00894-016-2969-1
  12. Djebaili A., Labidi N.S. // J. Saudi Chem. Soc. 2012. V. 16. P. 437. http://dx.doi.org/10.1016/j.jscs.2011.09.009
  13. Salzner U., Aydin A. // J. Chem. Theory Comput. 2011. V. 7. P. 2568. http://dx.doi.org/10.1021/ct2003447
  14. Donohoo-Vallett P.J., Bragg A.E. // J. Phys. Chem. B. 2015. V. 119. P. 3583. http://dx.doi.org/10.1021/jp512693e
  15. Baughman R.H., Kohler B.E., Levy I.J., Spangler C. // Synth Met. 1985. V. 11. P. 37. http://dx.doi.org/10.1016/0379-6779(85)90172-9
  16. Wykes M., Su N.Q., Xu X., et al. // J. Chem. Theory Comput. 2015. V. 11. P. 832. http://dx.doi.org/10.1021/ct500986b
  17. Jacquemin D., Adamo C. // Ibid. 2011. V. 7. P. 369. http://dx.doi.org/10.1021/ct1006532
  18. Neese F. // Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012. V. 2. P. 73. http://dx.doi.org/10.1002/wcms.81
  19. Neese F. // Ibid. 2022. V. 12. http://dx.doi.org/10.1002/wcms.1606
  20. Berry R.J., Harmony M.D. // Struct. Chem. 1990. V.1. P. 49. http://dx.doi.org/10.1007/BF00675784
  21. Vogt N., Vogt J. Structure Data of Free Polyatomic Molecules. 1st ed. Cham, Switzerland: Springer Nature; 2020. http://dx.doi.org/10.1007/978-3-030-29430-4
  22. Neese F., Schwabe T., Kossmann S., et al. // J. Chem. Theory Comput. 2009. V. 5. P. 3060. http://dx.doi.org/10.1021/ct9003299
  23. Fink R.F. // J. Chem. Phys. 2016. V. 145. P. 184101. http://dx.doi.org/10.1063/1.4966689
  24. Fink R.F. // Ibid. 2010. V. 133. P. 174113. http://dx.doi.org/10.1063/1.3503041
  25. Neese F., Wennmohs F., Hansen A., Becker U. // Chem Phys. 2009. V. 356. P. 98. http://dx.doi.org/10.1016/j.chemphys.2008.10.036
  26. Pinski P., Riplinger C., Valeev E.F., Neese F. // J. Chem. Phys. 2015. V. 143. P. 034108. http://dx.doi.org/10.1063/1.4926879

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Errors of C-C bond lengths in ethane calculated using FC-MP2 and FC-CCSD(T) compared to the experimental one [6].

Baixar (65KB)
3. Fig. 2. Errors of the C-C double bond lengths in ethylene calculated using FC-MP2 and FC-CCSD(T) compared to the experimental one [20].

Baixar (69KB)
4. Fig. 3. Errors in the bond lengths of polyenes calculated using FC-MP2/def2-TZVP compared to those calculated using AE-CCSD(T)/CBS [8,9].

Baixar (47KB)
5. Fig. 4. Errors in bond lengths in hexatriene-1,3,5 calculated using different approaches in the frozen-core approximation, compared with semi-experimental data [8].

Baixar (77KB)
6. Fig. 5. Bond length errors in hexatriene-1,3,5 calculated using different approaches with and without the frozen backbone approximation, compared with semi-experimental data [8].

Baixar (91KB)
7. Fig. 6. Errors in the lengths of C–C bonds in ethane (a) and ethylene (b), calculated using different approaches, compared with experimental ones [6, 20].

Baixar (197KB)
8. Fig. 7. Errors in the bond lengths of polyenes calculated using AE-SCS-MP2/cc-pwCVTZ compared to those calculated using AE-CCSD(T)/CBS [8,9].

Baixar (87KB)
9. Fig. 8. Differences in 10-ene bond lengths obtained with and without using the RIJCOSX and DLPNO approximations.

Baixar (130KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024