Polymeric iodobismuthates Cat{[BiI4]} with pyridinium-derived cations: structure and properties

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Two novel bismuth(III) iodide complexes – (1,3,4-MePy){[BiI4]} (1) и (3-Br-1-MePy){[BiI4]} (2)) – were synthesized by the reaction of iodides of corresponding cations with BiI3 in organic solvents. Crystal structure of the compounds was determined by X-ray diffraction; For both complexes, the thermal stability was studied, and the optical band gap values were experimentally estimated.

Толық мәтін

Рұқсат жабық

Авторлар туралы

I. Shentseva

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: usoltsev@niic.nsc.ru
Ресей, Novosibirsk, 630090

A. Usoltsev

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: usoltsev@niic.nsc.ru
Ресей, Novosibirsk, 630090

N. Korobeynikov

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences; Novosibirsk State University

Email: usoltsev@niic.nsc.ru
Ресей, Novosibirsk, 630090; Novosibirsk, 630090

I. Korolkov

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: usoltsev@niic.nsc.ru
Ресей, Novosibirsk, 630090

M. Sokolov

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: usoltsev@niic.nsc.ru
Ресей, Novosibirsk, 630090

S. Adonin

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences; Irkutsk Favorsky Institute of Chemistry SB RAS

Email: usoltsev@niic.nsc.ru
Ресей, Novosibirsk, 630090; Irkutsk, 664033

Әдебиет тізімі

  1. Lindsjö M., Fischer A., Kloo L. // Z. Anorg. Allg. Chem. 2005. V. 631. № 8. P. 1497. https://doi.org/10.1002/zaac.200400559
  2. Wu L.M., Wu X.T., Chen L. // Coord. Chem. Rev. 2009. V. 253. № 23–24. P. 2787. https://doi.org/10.1016/j.ccr.2009.08.003
  3. Möbs J., Gerhard M., Heine J. // Dalton Trans. 2020. V. 49. № 41. P. 14397. https://doi.org/10.1039/d0dt03427d
  4. Heine J. // Dalton Trans. 2015. P. 10069. https://doi.org/10.1039/c5dt00813a
  5. Shestimerova T.A., Yelavik N.A., Mironov A.V. et al. // Inorg. Chem. 2018. V. 57. № 7. P. 4077. https://doi.org/10.1021/acs.inorgchem.8b00265
  6. Yelovik N.A., Shestimerova T.A., Bykov M.A. et al. // Russ. Chem. Bull. 2017. V. 66. № 7. P. 1196. https://doi.org/10.1007/s11172-017-1872-y
  7. Hrizi C., Trigui A., Abid Y. et al. // J. Solid State Chem. 2011. V. 184. № 12. P. 3336. https://doi.org/10.1016/J.JSSС. 2011.10.004
  8. Hrizi C., Chaari N., Abid Y. et al. // Polyhedron. 2012. V. 46. № 1. P. 41. https://doi.org/10.1016/J.POLY.2012.07.062
  9. Ahern J.C., Nicholas A.D., Kelly A.W. et al. // Inorg. Chim. Acta. 2018. V. 478. P. 71. https://doi.org/10.1016/J.ICA.2018.03.040
  10. Usol’tsev A.N., Shentseva I.A., Shayapov V.R. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 12. P. 1979. https://doi.org/10.1134/S0036023622601647
  11. Petrov A.A., Marchenko E.I., Fateev S.A. et al. // Mendeleev Commun. 2022. V. 32. № 3. P. 311. https://doi.org/10.1016/j.mencom.2022.05.006
  12. Grishko A.Y., Zharenova E.A., Goodilina E.A. et al. // Mendeleev Commun. 2021. V. 31. № 2. P. 163. https://doi.org/10.1016/j.mencom.2021.03.006
  13. Petrov A.A., Fateev S.A., Grishko A.Y. et al. // Mendeleev Commun. 2021. V. 31. № 1. P. 14. https://doi.org/10.1016/j.mencom.2021.01.003
  14. Ustinova M.I., Mikheeva M.M., Shilov G.V. et al. // ACS Appl. Mater. Interfaces. 2021. V. 13. № 4. P. 5184. https://doi.org/10.1021/acsami.0c18061
  15. Frolova L.A., Gutsev L.G., Ramachandran B.R. et al. // Chem. Eng. J. 2021. V. 426. https://doi.org/10.1016/j.cej.2021.131754
  16. Petrov A.A., Sokolova I.P., Belich N.A. et al. // J. Phys. Chem. С. 2017. V. 121. № 38. P. 20739. https://doi.org/10.1021/acs.jpcc.7b08468
  17. Fateev S.A., Khrustalev V.N., Simonova A.V. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 7. P. 997. https://doi.org/10.1134/S0036023622070087
  18. Green M.A., Dunlop E.D., Hohl-Ebinger J. et al. // Prog. Photovoltaics Res. Appl. 2022. V. 30. № 7. P. 687. https://doi.org/10.1002/pip.3595
  19. Liu H., Zhang Z., Zuo W. et al. // Adv. Energy Mater. 2023. V. 13. № 3. P. 2202209. https://doi.org/10.1002/aenm.202202209
  20. Mastryukov M.V., Son A.G., Tekshina E.V. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 10. P. 1652. https://doi.org/10.1134/S0036023622100540
  21. Novikov A.V., Usoltsev A.N., Adonin S.A. et al. // J. Mater. Chem. A. 2020. V. 8. № 42. P. 21988. https://doi.org/10.1039/D0TA06301K
  22. Ganose A.M., Savory C.N., Scanlon D.O. // Chem. Commun. 2017. V. 53. № 1. P. 20. https://doi.org/10.1039/c6cc06475b
  23. Mercier N., Louvain N., Bi W. // CrystEngComm. 2009. V. 11. № 5. P. 720. https://doi.org/10.1039/b817891g
  24. Sheldrick G.M. // Acta Crystallogr., Sect. A: Found. Adv. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053273314026370
  25. Sheldrick G.M. // Acta Crystallogr., Sect. C: Struct. Chem. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053229614024218
  26. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. № 2. P. 339. https://doi.org/10.1107/S0021889808042726
  27. Bowmaker G.A., Junk P.C., Lee A.M. et al. // Aust. J. Chem. 1998. V. 51. № 4. P. 293. https://doi.org/10.1071/C97036
  28. Bi W., Mercier N. // Chem. Commun. 2008. № 44. P. 5743. https://doi.org/10.1039/b812588k
  29. Tershansy M.A., Goforth A.M., Gardinier J.R. et al. // Solid State Sci. 2007. V. 9. № 5. P. 410. https://doi.org/10.1016/j.solidstatesciences.2007.03.010
  30. Chernyshov I.Y., Ananyev I.V., Pidko E.A. // ChemPhysChem. 2020. V. 21. № 5. P. 370. https://doi.org/10.1002/cphc.201901083
  31. Desiraju G.R., Shing Ho P., Kloo L. et al. // Pure Appl. Chem. 2013. V. 85. № 8. P. 1711. https://doi.org/10.1351/PAC-REC-12-05-10
  32. Bhattacharyya D., Chaudhuri S., Pal A. // Vacuum. 1992. V. 43. № 4. P. 313. https://doi.org/10.1016/0042-207X(92)90163-Q
  33. Usoltsev A.N., Elshobaki M., Adonin S.A. et al. // J. Mater. Chem. A. 2019. V. 7. № 11. P. 5957. https://doi.org/10.1039/c8ta09204d
  34. Chen X., Jia M., Xu W. et al. // Adv. Opt. Mater. 2022. V. 2202153. P. 1. https://doi.org/10.1002/adom.202202153

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Crystal packing of compound 1 along the crystallographic axis a.

Жүктеу (316KB)
3. Fig. 2. Br---I contacts (dashed line) in crystal structure 2. Hydrogen atoms are not shown.

Жүктеу (244KB)
4. Fig. 3. Stacking interactions in the structures of compounds 1 and 2. For C---Br interactions the distances are signed.

Жүктеу (271KB)
5. Fig. 4. Powder diffractograms of compounds 1 (a) and 2 (b): black - calculated, red - experimental.

Жүктеу (234KB)
6. Fig. 5. TG, DTG and DTA curves for compounds 1 (a) and 2 (b).

Жүктеу (241KB)
7. Fig. 6. Diffuse reflectance spectra of compounds 1 (a) and 2 (b).

Жүктеу (118KB)

© Russian Academy of Sciences, 2024