Хемосенсорные свойства нанокомпозита Ti0.2V1.8CTx–V2O5–SnO2

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Разработана методика модифицирования аккордеоноподобного максена сложного состава Ti0.2V1.8CTx оксидами олова(IV) и ванадия путем гидротермального синтеза SnO2 в водно-спиртовой среде в присутствии диспергированных частиц двумерного карбида ванадия-титана, нанесения методом микроплоттерной печати на специализированную подложку покрытия состава Ti0.2V1.8CTx–10 мол. % SnO2 с последующей термической обработкой на воздухе при температуре 300°С в течение 1 ч. Для сформировавшегося нанокомпозитного слоя Ti0.2V1.8CTx–V2O5–SnO2 комплексно изучены хемосенсорные свойства по отношению к ряду газов-аналитов: 100 ppm CO, NH3, NO2, бензола, ацетона, этанола, 1000 ppm H2, метана и 10% кислорода. Показана его высокая чувствительность и селективность к диоксиду азота при рабочих температурах 150 и 200°С: отклики на 100 ppm NO2 составили 281 и 873% соответственно.

Полный текст

Доступ закрыт

Об авторах

Е. П. Симоненко

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Автор, ответственный за переписку.
Email: ep_simonenko@mail.ru
Россия, 119991, Москва, Ленинский пр-т, 31

А. С. Мокрушин

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Email: ep_simonenko@mail.ru
Россия, 119991, Москва, Ленинский пр-т, 31

И. А. Нагорнов

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Email: ep_simonenko@mail.ru
Россия, 119991, Москва, Ленинский пр-т, 31

Ю. М. Горбань

Институт общей и неорганической химии им. Н.С. Курнакова РАН; Российский химико-технологический университет им. Д.И. Менделеева

Email: ep_simonenko@mail.ru
Россия, 119991, Москва, Ленинский пр-т, 31; 125047, Москва, Миусская пл., 9

Т. Л. Симоненко

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Email: ep_simonenko@mail.ru
Россия, 119991, Москва, Ленинский пр-т, 31

Н. П. Симоненко

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Email: ep_simonenko@mail.ru
Россия, 119991, Москва, Ленинский пр-т, 31

Н. Т. Кузнецов

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Email: ep_simonenko@mail.ru
Россия, 119991, Москва, Ленинский пр-т, 31

Список литературы

  1. Pang J., Mendes R.G., Bachmatiuk A. et al. // Chem. Soc. Rev. 2019. V. 48. № 1. P. 72. https://doi.org/10.1039/C8CS00324F
  2. Tang Q., Zhou Z. // Prog. Mater. Sci. 2013. V. 58. № 8. P. 1244. https://doi.org/10.1016/j.pmatsci.2013.04.003
  3. Iqbal A., Sambyal P., Koo C.M. // Adv. Funct. Mater. 2020. V. 30. № 47. https://doi.org/10.1002/adfm.202000883
  4. VahidMohammadi A., Rosen J., Gogotsi Y. // Science. 2021. V. 372. № 6547. https://doi.org/10.1126/science.abf1581
  5. Lei J.-C., Zhang X., Zhou Z. // Front. Phys. 2015. V. 10. № 3. P. 276. https://doi.org/10.1007/s11467-015-0493-x
  6. Hong Ng V.M., Huang H., Zhou K. et al. // J. Mater. Chem. A. 2017. V. 5. № 7. P. 3039. https://doi.org/10.1039/C6TA06772G
  7. Zhan X., Si C., Zhou J. et al. // Nanoscale Horizons. 2020. V. 5. № 2. P. 235. https://doi.org/10.1039/C9NH00571D
  8. Zhang X., Zhang Z., Zhou Z. // J. Energy Chem. 2018. V. 27. № 1. P. 73. https://doi.org/10.1016/j.jechem.2017.08.004
  9. Mashangva T.T., Goel A., Bagri U. et al. // Appl. Mater. Today. 2024. V. 38. P. 102163. https://doi.org/10.1016/j.apmt.2024.102163
  10. Deshmukh K., Kovářík T., Khadheer Pasha S.K. // Coord. Chem. Rev. 2020. V. 424. P. 213514. https://doi.org/10.1016/j.ccr.2020.213514
  11. Venkateshalu S., Grace A.N. // Appl. Mater. Today. 2020. V. 18. P. 100509. https://doi.org/10.1016/j.apmt.2019.100509
  12. Alwarappan S., Nesakumar N., Sun D. et al. // Biosens. Bioelectron. 2022. V. 205. P. 113943. https://doi.org/10.1016/j.bios.2021.113943
  13. Mehdi Aghaei S., Aasi A., Panchapakesan B. // ACS Omega. 2021. V. 6. № 4. P. 2450. https://doi.org/10.1021/acsomega.0c05766
  14. Bhardwaj R., Hazra A. // J. Mater. Chem. С. 2021. V. 9. № 44. P. 15735. https://doi.org/10.1039/D1TC04085E
  15. Nahirniak S., Saruhan B. // Sensors. 2022. V. 22. № 3. P. 972. https://doi.org/10.3390/s22030972
  16. Tran V.A., Tran N.T., Doan V.D. et al. // Micromachines. 2023. V. 14. № 2. P. 247. https://doi.org/10.3390/mi14020247
  17. Qin R., Shan G., Hu M. et al. // Mater. Today Phys. 2021. V. 21. P. 100527. https://doi.org/10.1016/j.mtphys.2021.100527
  18. Simonenko E.P., Simonenko N.P., Mokrushin A.S. et al. // Nanomaterials. 2023. V. 13. № 5. P. 850. https://doi.org/10.3390/nano13050850
  19. Chourasia N.K., Rawat A., Chourasia R.K. et al. // Mater. Adv. 2023. V. 4. № 23. P. 5948. https://doi.org/10.1039/D3MA00631J
  20. Ta Q., Thakur D., Noh J.-S. // Chemosensors. 2023. V. 11. № 9. P. 477. https://doi.org/10.3390/chemosensors11090477
  21. Peng B., Huang X. // Front. Chem. 2022. V. 10. https://doi.org/10.3389/fchem.2022.1037732
  22. Naguib M., Kurtoglu M., Presser V. et al. // Adv. Mater. 2011. V. 23. № 37. P. 4248. https://doi.org/10.1002/adma.201102306
  23. Wang S., Jiang Y., Liu B. et al. // Sens. Actuators, B: Chem. 2021. V. 343. P. 130069. https://doi.org/10.1016/j.snb.2021.130069
  24. Pazniak H., Varezhnikov A.S., Kolosov D.A. et al. // Adv. Mater. 2021. V. 33. № 52. P. 2104878. https://doi.org/10.1002/adma.202104878
  25. Kumar A.N., Pal K. // Mater. Adv. 2022. V. 3. № 12. P. 5151. https://doi.org/10.1039/d2ma00301e
  26. Rathi K., Arkoti N.K., Pal K. // Adv. Mater. Interfaces. 2022. V. 9. № 22. https://doi.org/10.1002/admi.202200415
  27. Thomas T., Ramos Ramón J.A., Agarwal V. et al. // Microporous Mesoporous Mater. 2022. V. 336. P. 111872. https://doi.org/10.1016/j.micromeso.2022.111872
  28. Okawa A., Yang M., Hasegawa T. et al. // Discov. Mater. 2023. V. 3. № 1. P. 12. https://doi.org/10.1007/s43939-023-00048-4
  29. Wang P., Guo S., Zhao Y. et al. // Sens. Actuators, B: Chem. 2024. V. 398. P. 134710. https://doi.org/10.1016/j.snb.2023.134710
  30. Wang W., Yao Y., Xin J. et al. // Nanotechnology. 2024. V. 35. № 21. P. 215502. https://doi.org/10.1088/1361-6528/ad2b4a
  31. Wu M., An Y., Yang R. et al. // ACS Appl. Nano Mater. 2021. V. 4. № 6. P. 6257. https://doi.org/10.1021/acsanm.1c01059
  32. Lee E., VahidMohammadi A., Yoon Y.S. et al. // ACS Sensors. 2019. V. 4. № 6. P. 1603. https://doi.org/10.1021/acssensors.9b00303
  33. Simonenko N.P., Glukhova O.E., Plugin I.A. et al. // Chemosensors. 2022. V. 11. № 1. P. 7. https://doi.org/10.3390/chemosensors11010007
  34. Guo L., Han H., Li Y. et al. // Appl. Phys. Lett. 2023. V. 123. № 1. https://doi.org/10.1063/5.0156402
  35. Simonenko N.P., Glukhova O.E., Plugin I.A. et al. // Chemosensors. 2023. V. 11. № 7. P. 1.
  36. Simonenko E.P., Simonenko N.P., Mokrushin A.S. et al. // Nanomaterials. 2023. V. 13. № 850. P. 1. https://doi.org/10.3390/nano13050850
  37. Wang X., Zhang D., Zhang H. et al. // Nano Energy. 2021. V. 88. P. 106242. https://doi.org/10.1016/j.nanoen.2021.106242
  38. Cai Y., Wang Y., Wen X. et al. // Anal. Chim. Acta. 2022. V. 1225. P. 340256. https://doi.org/10.1016/j.aca.2022.340256
  39. Qiu J., Xia X., Hu Z. et al. // Nanotechnology. 2022. V. 33. № 6. P. 065501. https://doi.org/10.1088/1361-6528/ac33d3
  40. Ma J., Zhai H., Zhang Z. et al. // ACS Appl. Nano Mater. 2023. V. 6. № 21. P. 19797. https://doi.org/10.1021/acsanm.3c03615
  41. Lee S.H., Eom W., Shin H. et al. // ACS Appl. Mater. Interfaces. 2020. V. 12. № 9. P. 10434. https://doi.org/10.1021/acsami.9b21765
  42. Tran N.M., Ta Q.T.H., Noh J.-S. // Mater. Chem. Phys. 2021. V. 273. P. 125087. https://doi.org/10.1016/j.matchemphys.2021.125087
  43. Zhang Y., Jiang Y., Duan Z. et al. // Sens. Actuators, B: Chem. 2021. V. 344. № 2. P. 130150. https://doi.org/10.1016/j.snb.2021.130150
  44. Zhang Y., Li Y., Jiang Y. et al. // Sens. Actuators, B: Chem. 2024. V. 411. P. 135788. https://doi.org/10.1016/j.snb.2024.135788
  45. Tian X., Yao L., Cui X. et al. // J. Mater. Chem. A. 2022. V. 10. № 10. P. 5505. https://doi.org/10.1039/D1TA10773A
  46. Le V.T., Vasseghian Y., Doan V.D. et al. // Chemosphere. 2022. V. 291. P. 133025. https://doi.org/10.1016/j.chemosphere.2021.133025
  47. Phuong Doan T.H., Hong W.G., Noh J.-S. // RSC Adv. 2021. V. 11. № 13. P. 7492. https://doi.org/10.1039/D0RA10879K
  48. Chen W.Y., Sullivan C.D., Lai S.-N. et al. // ACS Omega. 2022. V. 7. № 33. P. 29195. https://doi.org/10.1021/acsomega.2c03272
  49. Mokrushin A.S., Nagornov I.A., Averin A.A. et al. // Chemosensors. 2023. V. 11. № 2. P. 142. https://doi.org/10.3390/chemosensors11020142
  50. Majhi S.M., Ali A., Greish Y.E. et al. // Sci. Rep. 2023. V. 13. № 1. P. 3114. https://doi.org/10.1038/s41598-023-30002-6
  51. Zhang D., Yu S., Wang X. et al. // J. Hazard. Mater. 2022. V. 423. P. 127160. https://doi.org/10.1016/j.jhazmat.2021.127160
  52. Simonenko E.P., Nagornov I.A., Mokrushin A.S. et al. // Micromachines. 2023. V. 14. № 4. P. 725. https://doi.org/10.3390/mi14040725
  53. Wang C., Li R., Feng L. et al. // Chemosensors. 2022. V. 10. № 3. P. 109. https://doi.org/10.3390/chemosensors10030109
  54. Wang J., Yang Y., Xia Y. // Sens. Actuators, B: Chem. 2022. V. 353. P. 131087. https://doi.org/10.1016/j.snb.2021.131087
  55. Gasso S., Mahajan A. // ACS Sensors. 2022. V. 7. № 8. P. 2454. https://doi.org/10.1021/acssensors.2c01213
  56. Симоненко Е.П., Мокрушин А.С., Нагорнов И.А. и др. // Журн. неорган. химии. 2024. V. 69. № 4. В печати.
  57. Wang Z., Wang F., Hermawan A. et al. // J. Mater. Sci. Technol. 2021. V. 73. P. 128. https://doi.org/10.1016/j.jmst.2020.07.040
  58. Yao Y., Han Y., Zhou M. et al. // J. Mater. Chem. A. 2022. V. 10. № 15. P. 8283. https://doi.org/10.1039/D1TA11018G
  59. Wu X., Gong Y., Yang B. et al. // Appl. Surf. Sci. 2022. V. 581. P. 152364. https://doi.org/10.1016/j.apsusc.2021.152364
  60. Simonenko E.P., Simonenko N.P., Nagornov I.A. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 5. P. 705. https://doi.org/10.1134/S0036023622050187
  61. Simonenko E.P., Mokrushin A.S., Simonenko N.P. et al. // Thin Solid Films. 2019. V. 670. https://doi.org/10.1016/j.tsf.2018.12.004
  62. Mokrushin A.S., Simonenko E.P., Simonenko N.P. et al. // Appl. Surf. Sci. 2019. V. 463. P. 197. https://doi.org/10.1016/j.apsusc.2018.08.208
  63. Mokrushin A.S., Nagornov I.A., Simonenko Т. L. et al. // Mater. Sci. Eng., B. 2021. V. 271. P. 115233. https://doi.org/10.1016/j.mseb.2021.115233
  64. Schreyer M., Guo L., Thirunahari S. et al. // J. Appl. Crystallogr. 2014. V. 47. № 2. P. 659. https://doi.org/10.1107/S1600576714003379
  65. Davey W.P. // Phys. Rev. 1925. V. 25. № 6. P. 753. https://doi.org/10.1103/PhysRev.25.753
  66. Seki H., Ishizawa N., Mizutani N. et al. // J. Ceram. Soc. Jpn. 1984. V. 92. № 1064. P. 219. https://doi.org/10.2109/jcersj1950.92.1064_219
  67. The crystal structures of three new vanadium oxide minerals. 1957. https://doi.org/10.3133/tei684

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Микроструктура полученного многослойного максена Ti0.2V1.8CTx по данным ПЭМ

Скачать (205KB)
3. Рис. 2. Рентгенограммы исходной МАХ-фазы Ti0.2V1.8AlC (1), синтезированного многослойного максена Ti0.2V1.8CTx (2) и композиционного материала Ti0.2V1.8CTx–SnO2, полученного в результате гидротермального синтеза (3)

Скачать (174KB)
4. Рис. 3. Микроструктура композиционного наноматериала Ti0.2V1.8CTx–SnO2 по данным ПЭМ; желтыми стрелками обозначено внедрение наночастиц SnO2 между слоями максена, зелеными – их расположение на поверхности аккордеоноподобных агрегатов

Скачать (125KB)
5. Рис. 4. Микроструктура покрытия Ti0.2V1.8CTx–SnO2 после его окисления при температуре 300С и образования состава Ti0.2V1.8CTx–V2O5–SnO2 по данным РЭМ. Стрелками обозначены агрегаты многослойного максена в составе материалов

Скачать (989KB)
6. Рис. 5. Диаграмма селективности композиционного покрытия Ti0.2V1.8CTx–V2O5–SnO2, составленная из откликов на различные газы (100 ppm CO, NH3, NO2, C6H6, C3H6O, C2H5OH, 1000 ppm H2, CH4, 10% O2) при температурах детектирования 150 и 200С

Скачать (155KB)
7. Рис. 6. Отклики композиционного покрытия Ti0.2V1.8CTx–V2O5–SnO2 на 4–100 ppm NO2 (а); зависимость отклика от концентрации NO2 в газовой атмосфере (б); измерения проведены при рабочей температуре 200C

Скачать (117KB)
8. Рис. 7. Воспроизводимость сигнала композиционного покрытия Ti0.2V1.8CTx–V2O5–SnO2 при детектировании 10 ppm NO2 при рабочей температуре 200°С

Скачать (82KB)

© Российская академия наук, 2024