ВЛИЯНИЕ СТРОЕНИЯ ФОСФОРИЛ-И КАРБОНИЛСОДЕРЖАЩИХ ПОДАНДОВ НА ЭКСТРАКЦИЮ ЛАНТАНОИДОВ(III) ИЗ АЗОТНОКИСЛЫХ РАСТВОРОВ В ПРИСУТСТВИИ ИОННОЙ ЖИДКОСТИ -бис[(ТРИФТОРМЕТИЛ)СУЛЬФОНИЛ]ИМИДА 1-БУТИЛ-3-МЕТИЛИМИДАЗОЛИЯ

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Изучено межфазное распределение ионов лантаноидов(III) между водными растворами HNO3и растворами тетрабутилдигликольамида Bu2C(O)CH2OCH2C(O)NBu2(1), соединений R2P(O)CH2OCH2C(O)NBu2, где R = Bu (2), Ph (3), и фосфорилсодержащих подандов R2P(O)CH2OCH2P(O)R12, где R = R1= Bu (4); R = Bu, R1= Ph (5);R=R1= Ph (6), в 1,2-дихлорэтане и ионной жидкости - бис[(трифторметил)сульфонил]имиде 1-бутил-3-метилимидазолия. Установлено, что экстракция ионов металлов значительно возрастает в присутствии ионной жидкости в органической фазе. Определена стехиометрия извлекаемых комплексов, рассмотрено влияние концентрации HNO3 в водной фазе и строения экстрагента на эффективность извлечения ионов металлов в органическую фазу.

Об авторах

А. Н. Туранов

Институт физики твердого тела им. Ю.А. Осипьяна РАН

Черноголовка, Россия

В. К. Карандашев

Институт проблем технологии микроэлектроники и особо чистых материалов РАН

Email: karan@iptm.ru
Черноголовка, Россия

А. В. Харламов

ООО “ВОДЭКО”

Москва, Россия

Н. А. Бондаренко

Национальный исследовательский центр “Курчатовский институт”

Москва, Россия

Список литературы

  1. ChakoumakosB.C. // J. Solid State Chem. 1984.V. 53. P. 120. https://doi.org/10.1016/0022-4596(84)90234-2
  2. Yamaura J.I., Yonezawa S., Muraoka Y. // J. Solid State Chem. 2006. V. 179. P. 336. https://doi.org/10.1016/j.jssc.2005.10.039
  3. Schwertmann L., Grunert A., Pougin A. et al. // Adv. Funct. Mater. 2015. V. 25. P. 905. https://doi.org/10.1002/adfm.201403092
  4. Jitta R.R., Gundeboina R., Veldurthi N.K. et al. // J. Chem. Technol. Biotechnol. 2015. V. 90. P. 1937. https://doi.org/10.1002/jctb.4745
  5. Shannon M.A., Bohn P.W., Elimelech M. et al. // Nature Mater. 2008. V. 452. P. 301. https://doi.org/10.1038/nature06599
  6. Jayaraman V., Mani A. // Sep. Purif. Technol. 2020. V. 235. P. 116242. https://doi.org/10.1016/j.seppur.2019.116242
  7. Long Z., Li Q.,Wei T. et al. // J. Hazard Mater. 2020. V. 395. P. 122599. https://doi.org/10.1016/j.jhazmat.2020.122599
  8. Semenycheva L., Chasova V., Matkivskaya J. et al. // J. Inorg. Organomet. Polym. 2021. V. 31. P. 3572. https://doi.org/10.1007/s10904-021-02054-6
  9. Zuarez-Chamba M., Rajendran S., Herrera-Robledo M. et al. // Environ. Res. 2022. V. 209. P. 112834. https://doi.org/10.1016/j.envres.2022.112834
  10. Guje R., Ravi G., Palla S. et al. // Mater. Sci. Eng. B. 2015. V. 198. P. 1. https://doi.org/10.1016/j.mseb.2015.03.010
  11. Sulaeman U., Yin S., Sato T. // Appl. Catal. B. 2011. V. 105. P. 206. https://doi.org/10.1016/j.apcatb.2011.04.017
  12. Ohgushi K., Yamaura J., Ichihara M. et al. // Phys. Rev. B: Condens. Matter. 2011. V. 83. P. 125103. https://doi.org/10.1103/PhysRevB.83.125103
  13. Kaviyarasu K., Magdalane C.M., Jayakumar D. et al. // J. King Saud Univ. Sci. 2020. V. 32. P. 1516. https://doi.org/10.1016/j.jksus.2019.12.006
  14. Varlamova L.A., Ignatov S.K., Fukina D.G. et al. // J. Phys. Chem. C. 2018. V. 122. P. 24907. https://doi.org/10.1021/acs.jpcc.8b07117
  15. Gorshkov A.P., Mazhukina K.A., Volkova N.S. et al. // J. Solid State Chem. 2022. V. 310. P. 123083. https://doi.org/10.1016/j.jssc.2022.123083
  16. Fukina D.G., Shotina V.A., Boryakov A.V. et al. // ChemPhotoChem. 2023. V. 7. P. e202300072. https://doi.org/10.1002/cptc.202300072
  17. Fukina D.G., Koryagin A.V., Titaev D.N. et al. // Eur. J. Inorg. Chem. 2022. V. 2022. P. e202200371. https://doi.org/10.1002/ejic.202200371
  18. Fukina D.G., Koryagin A.V., Koroleva A.V. et al. // J. Solid State Chem. 2021. V. 300. P. 122235. https://doi.org/10.1016/j.jssc.2021.122235
  19. Fukina D.G., Suleimanov E.V., Fukin G.K. et al. // J. Solid State Chem. 2020. V. 286. P. 121267. https://doi.org/10.1016/j.jssc.2020.121267
  20. Gorshkov A.P., Mazhukina K.A., Volkova N.S. et al. // J. Solid State Chem. 2022. V. 310. P. 123083. https://doi.org/10.1016/j.jssc.2022.123083
  21. Fukina D.G., Suleimanov E.V., Boryakov A.V. et al. // Inorg. Chem. 2020. V. 59. P. 14118. https://doi.org/10.1021/acs.inorgchem.0c01895
  22. Пятериков Е.А., Петьков В.И., Фукина Д.Г. и др. // Журн. неорган. химии. 2023. Т. 68. С. 1388. https://doi.org/10.31857/S0044457X23600482
  23. Мацкевич Н.И., Шлегель В.Н., Григорьева В.Д. и др. //Журн. неорган. химии. 2022. Т. 67. С. 1373. https://doi.org/10.31857/S0044457X22100579
  24. Markin A.V., Smirnova N.N., Fukina D.G. et al. // J. Chem. Thermodyn. 2021. V. 160. P. 106492. https://doi.org/10.1016/j.jct.2021.106492
  25. Varushchenko R.M., Druzhinina A.I., Sorkin E.L. // J. Chem. Thermodyn. 1997. V. 29. P. 623. https://doi.org/10.1006/jcht.1996.0173
  26. Sabbah R., Xu-wu A., Chickos J.S. et al. // Thermochim. Acta. 1999. V. 331. P. 93. https://doi.org/10.1016/S0040-6031(99)00009-X
  27. Hohne G.W.H., Hemminger W.F., Flammersheim H.-J. Differential scanning calorimetr. New York: Springer-Verlag Berlin Heidelberg, 2003. https://doi.org/10.1007/978-3-662-06710-9
  28. Drebushchak V.A. // J. Therm. Anal. Calorim. 2005. V. 79. P. 213. https://doi.org/10.1007/s10973-004-0586-1.
  29. Della Gatta G., Richardson M.J., Sarge S.M. et al. // Pure Appl. Chem. 2006. V. 78. P. 1455. https://doi.org/10.1351/pac200678071455
  30. Lazarev V.B., Izotov A.D., Gavrichev K.S. et al. // Thermochim. Acta. 1995. V. 269/270. P. 109. https://doi.org/10.1016/0040-6031(95)02529-4
  31. Тарасов В.В. //Журн. физ. химии. 1950. Т. 24.№1. С. 111.
  32. Lebedev B.V. // Thermochim. Acta. 1997. V. 297. P. 143.
  33. McCullough J.P., Scott D.W. Calorimetry of Nonreacting Systems. London: Butterworth, 1968.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2024