Кристаллические структуры и свойства смешаннолигандных металлорганических координационных полимеров [Zn2(BDC)X (BDC-I)(2–X)DABCO]

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Получены новые смешаннолигандные металлорганические координационные полимеры на основе цинка, терефталата (bdc), 2-иодтерефталата (bdc-I) и 1,4-диазобицикло[2.2.2]октана (dabco): [Zn2(bdc)1.67(bdc-I)0.33dabco] (I), [Zn2(bdc)1.46(bdc-I)0.54dabco] (II), [Zn2(bdc)1.12(bdc-I)0.88dabco] (III), [Zn2(bdc)0.80(bdc-I)1.2dabco] (IV), [Zn2(bdc)0.46(bdc-I)1.54dabco] (V). Методами рентгеноструктурного, рентгенофазового и элементного анализа определены их строение и состав. Соединения I–V изоструктурны [Zn2(bdc)2(dabco)], но не описанному нами ранее [Zn2(bdc-I)2(dabco)], что подтверждается данными РФА. Эксперименты по сорбции паров дииода согласуются с соображениями о том, что присутствие в составе МОКП большего количества 2-иодтерефталата должно приводить к снижению объема пор: наибольшее количество I2 поглощает I, а наименьшее — V.

Об авторах

А. С. Загузин

Институт неорганической химии им. Николаева СО РАН

Email: zaguzin@niic.nsc.ru
пр-т Академика Лаврентьева, 3, Новосибирск, 630090 Россия

Я. А. Зайцев

Институт неорганической химии им. Николаева СО РАН; Новосибирский государственный технический университет

Email: zaguzin@niic.nsc.ru
пр-т Академика Лаврентьева, 3, Новосибирск, 630090 Россия; пр-т Карла Маркса, 20, Новосибирск, 630073 Россия

А. В. Зайцев

Институт неорганической химии им. Николаева СО РАН; Новосибирский государственный университет

Email: zaguzin@niic.nsc.ru
пр-т Академика Лаврентьева, 3, Новосибирск, 630090 Россия; ул. Пирогова, 1, Новосибирск, 630090 Россия

Н. А. Коробейников

Институт неорганической химии им. Николаева СО РАН

Email: zaguzin@niic.nsc.ru
пр-т Академика Лаврентьева, 3, Новосибирск, 630090 Россия

М. А. Бондаренко

Институт неорганической химии им. Николаева СО РАН

Email: zaguzin@niic.nsc.ru
пр-т Академика Лаврентьева, 3, Новосибирск, 630090 Россия

Е. А. Максимовский

Институт неорганической химии им. Николаева СО РАН

Email: zaguzin@niic.nsc.ru
пр-т Академика Лаврентьева, 3, Новосибирск, 630090 Россия

В. П. Федин

Институт неорганической химии им. Николаева СО РАН

Email: zaguzin@niic.nsc.ru
пр-т Академика Лаврентьева, 3, Новосибирск, 630090 Россия

С. А. Адонин

Институт неорганической химии им. Николаева СО РАН; ФИЦ Иркутский институт химии им. А.Е. Фаворского СО РАН

Автор, ответственный за переписку.
Email: zaguzin@niic.nsc.ru
пр-т Академика Лаврентьева, 3, Новосибирск, 630090 Россия; ул. Фаворского, 1, Иркутск, 664033 Россия

Список литературы

  1. Pavlov D.I., Ryadun A.A., Fedin V.P. et al. // J. Struct. Chem. 2024. V. 65. № 12. P. 2567. https://doi.org/10.1134/S0022476624120199
  2. Cheplakova A.M., Eliseev E.A., Samsonenko D.G. et al. // J. Struct. Chem. 2024. V. 65. № 6. P. 1219. https://doi.org/10.1134/S0022476624060106
  3. Borisova A.S., Kuliukhina D.S., Malysheva A.S. et al. // Russ. Chem. Bull. 2024. V. 73. № 12. P. 3567. https://doi.org/10.1007/s11172-024-4467-4
  4. Arsenyeva K.V., Klimashevskaya A.V., Maleeva A.V. et al. // Russ. J. Coord. Chem. 2024. V. 50. № 11. P. 892. https://doi.org/10.1134/S1070328424601183
  5. Trofimova O.Y., Kolevatov D.S., Druzhkov N.O. et al. // Russ. J. Coord. Chem. 2024. V. 50. № 9. P. 636. https://doi.org/10.1134/S1070328424700726
  6. Samulionis A.S., Voronina J.K., Melnikov S.N. et al. // Russ. J. Coord. Chem. 2024. V. 50. № 9. P. 757. https://doi.org/10.1134/S1070328424601043
  7. Bazhina E.S., Shmelev M.A., Kiskin M.A. et al. // Russ. J. Coord. Chem. 2024. V. 50. № 8. P. 603. https://doi.org/10.1134/S1070328424600566
  8. Rubtsova I.K., Melnikov S.N., Shmelev M.A. et al. // Mendeleev Commun. 2020. V. 30. № 6. P. 722. https://doi.org/10.1016/j.mencom.2020.11.011
  9. Kim H., Samsonenko D.G., Das S. et al. // Chem. — An Asian J. 2009. V. 4. № 6. P. 886. https://doi.org/10.1002/asia.200900020
  10. Tsivadze A.Y., Aksyutin O.E., Ishkov A.G. et al. // Russ. Chem. Rev. 2019. V. 88. № 9. P. 925. https://doi.org/10.1070/RCR4873
  11. Solovtsova O.V., Pulin A.L., Men’shchikov I.E. et al. // Prot. Met. Phys. Chem. Surfaces. 2020. V. 56. № 6. P. 1114. https://doi.org/10.1134/S2070205120060222
  12. Dubskikh V.A., Lysova A.A., Samsonenko D.G. et al. // Molecules. 2021. V. 26. № 5. P. 1269. https://doi.org/10.3390/molecules26051269
  13. Abasheeva K.D., Demakov P.A., Polyakova E.V. et al. // Nanomaterials. 2023. V. 13. № 20. P. 2773. https://doi.org/10.3390/nano13202773
  14. Sapianik A.A., Kovalenko K.A., Samsonenko D.G. et al. // Chem. Commun. 2020. V. 56. № 59. P. 8241. https://doi.org/10.1039/d0cc03227a
  15. Sapianik A.A., Dudko E.R., Kovalenko K.A. et al. // ACS Appl. Mater. Interfaces. 2021. V. 13. № 12. P. 14768. https://doi.org/10.1021/acsami.1c02812
  16. Cheplakova A.M., Kovalenko K.A., Samsonenko D.G. et al. // Inorg. Chem. 2024. V. 63. № 51. P. 24187. https://doi.org/10.1021/acs.inorgchem.4c03990
  17. Seromlyanova K.A., Mushtakov A.G., Murtazin D.V. et al. // Pet. Chem. 2023. V. 63. № 2. P. 233. https://doi.org/10.1134/S0965544123020263
  18. Isaeva V.I., Chernyshev V.V., Fomkin A.A. et al. // Microporous Mesoporous Mater. 2020. V. 300. P. 110136. https://doi.org/10.1016/j.micromeso.2020.110136
  19. Isaeva V.I., Tarasov A.L., Tkachenko O.P. et al. // J. Porous Mater. 2025. V. 32. № 1. P. 263. https://doi.org/10.1007/s10934-024-01695-5
  20. Isaeva V.I., Nefedov O.M., Kustov L.M. // Catalysts. 2018. V. 8. № 9. P. 368. https://doi.org/10.3390/catal8090368
  21. Demakov P.A., Samsonenko D.G., Dybtsev D.N. et al. // Russ. Chem. Bull. 2022. V. 71. № 1. P. 83. https://doi.org/10.1007/s11172-022-3380-y
  22. Demakov P.A., Fedin V.P. // Russ. Chem. Bull. 2022. V. 71. № 5. P. 967. https://doi.org/10.1007/s11172-022-3498-y
  23. Demakov P.A., Lazarenko V.A., Dorovatovskii P.V. et al. // J. Struct. Chem. 2023. V. 64. № 12. P. 2417. https://doi.org/10.1134/S0022476623120132
  24. Yang Y., Yao H.F., Xi F.G. et al. // J. Mol. Catal. A: Chem. 2014. V. 390. P. 198. https://doi.org/10.1016/j.molcata.2014.04.002
  25. Yashkova K.A., Mel’nikov S.N., Nikolaevskii S.A. et al. // J. Struct. Chem. 2021. V. 62. № 9. P. 1378. https://doi.org/10.1134/S0022476621090067
  26. Tahmouresilerd B., Larson P.J., Unruh D.K. et al. // Catal. Sci. Technol. 2018. V. 8. № 17. P. 4349. https://doi.org/10.1039/C8CY00794B
  27. Cadman L.K., Bristow J.K., Stubbs N.E. et al. // Dalton. Trans. 2016. V. 45. № 10. P. 4316. https://doi.org/10.1039/C5DT04045K
  28. Osborn Popp T.M., Plantz A.Z., Yaghi O.M. et al. // ChemPhysChem. 2020. V. 21. № 1. P. 32. https://doi.org/10.1002/cphc.201901043
  29. Li S., Chung Y.G., Simon C.M. et al. // J. Phys. Chem. Lett. 2017. V. 8. № 24. P. 6135. https://doi.org/10.1021/acs.jpclett.7b02700
  30. Kogolev D., Semyonov O., Metalnikova N. et al. // J. Mater. Chem. A. 2023. V. 11. № 3. P. 1108. https://doi.org/10.1039/D2TA08127J
  31. Zhang K.L., Jing C.Y., Deng Y. et al. // J. Coord. Chem. 2014. V. 67. № 9. P. 1596. https://doi.org/10.1080/00958972.2014.926006
  32. Costa P.J. // Phys. Sci. Rev. 2019. V. 2. № 11. https://doi.org/10.1515/psr-2017-0136
  33. Li B., Zang S.Q., Wang L.Y. et al. // Coord. Chem. Rev. 2016. V. 308. P. 1. https://doi.org/10.1016/j.ccr.2015.09.005
  34. Gilday L.C., Robinson S.W., Barendt T.A. et al. // Chem. Rev. 2015. V. 115. № 15. P. 7118. https://doi.org/10.1021/cr500674c
  35. Soldatova N.S., Suslonov V.V., Ivanov D.M. et al. // Cryst. Growth Des. 2023. V. 23. № 1. P. 413. https://doi.org/10.1021/acs.cgd.2c01090
  36. Rozhkov A.V., Novikov A.S., Ivanov D.M. et al. // Cryst. Growth Des. 2018. V. 18. № 6. P. 3626. https://doi.org/10.1021/acs.cgd.8b00408
  37. Eliseeva A.A., Ivanov D.M., Novikov A.S. et al. // Dalton Trans. 2020. V. 49. № 2. P. 356. https://doi.org/10.1039/c9dt04221k
  38. Katlenok E.A., Kuznetsov M.L., Semenov N.A. et al. // Inorg. Chem. Front. 2023. V. 10. № 10. P. 3065. https://doi.org/10.1039/d3qi00087g
  39. Aliyarova I.S., Ivanov D.M., Soldatova N.S. et al. // Cryst. Growth Des. 2021. V. 21. № 2. P. 1136. https://doi.org/10.1021/acs.cgd.0c01463
  40. Christine T., Tabey A., Cornilleau T. et al. // Tetrahedron. 2019. V. 75. № 52. P. 130765. https://doi.org/10.1016/J.TET.2019.130765
  41. Sheldrick G.M. // Acta Crystallogr., Sect. A: Found. Adv. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053273314026370
  42. Sheldrick G.M. // Acta Crystallogr., Sect. C: Struct. Chem. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053229614024218
  43. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. № 2. P. 339. https://doi.org/10.1107/S0021889808042726
  44. Spek A.L. // Acta Crystallogr., Sect. C: Struct. Chem. 2015. V. 71. P. 9. https://doi.org/10.1107/S2053229614024929
  45. Lee J.Y., Olson D.H., Pan L. et al. // Adv. Funct. Mater. 2007. V. 17. № 8. P. 1255. https://doi.org/10.1002/adfm.200600944
  46. Zaguzin A.S., Sukhikh T.S., Kolesov B.A. et al. // Polyhedron. 2022. V. 212. P. 115587. https://doi.org/10.1016/j.poly.2021.115587

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025