Coordination Compounds of Yttrium(III) with Urea and Dimethylacetamide: Composition, Structure, Thermal Behavior

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Coordination compounds of yttrium(III) nitrate with urea (Ur) and N,N-dimethylacetamide, [Y(H2O)(Ur)2(NO3)3] (I), [Y(Ur)3(NO3)3] (II) and [Y(DMAA)3(NO3)3] (III), were synthesized; their compositions, structural features and thermolysis were studied with the use of elemental analysis, IR spectroscopy, X-ray powder and single-crystal diffraction, thermal gravimetric analysis, differential scanning calorimetry. The coordination compounds can be used for the synthesis of nano-scale yttrium(III) oxide.

全文:

受限制的访问

作者简介

E. Bettels

MIREA — Russian Technological University

Email: savinkina@mirea.ru
俄罗斯联邦, Moscow, 119571

M. Polukhin

MIREA — Russian Technological University

Email: savinkina@mirea.ru
俄罗斯联邦, Moscow, 119571

I. Karavaev

MIREA — Russian Technological University

Email: savinkina@mirea.ru
俄罗斯联邦, Moscow, 119571

E. Savinkina

MIREA — Russian Technological University

编辑信件的主要联系方式.
Email: savinkina@mirea.ru
俄罗斯联邦, Moscow, 119571

G. Buzanov

Kurnakov Institute of General and Inorganic Chemistry

Email: savinkina@mirea.ru
俄罗斯联邦, Moscow, 119991

A. Kubasov

Kurnakov Institute of General and Inorganic Chemistry

Email: savinkina@mirea.ru
俄罗斯联邦, Moscow, 119991

V. Retivov

Kurchatov Institute National Research Center

Email: savinkina@mirea.ru
俄罗斯联邦, Moscow, 123182

参考

  1. Hao S.J., Wang C., Liu Т. L. et al. // Int. J. Hydrogen. Energy. 2017. V. 42. P. 29949. https://doi.org/10.1016/j.ijhydene.2017.08.143
  2. Cho G.Y., Yu W., Lee Y.H. et al. // Int. J. Precis. Eng. Manuf.-Green Technol. 2020. V. 7. P. 423. https://doi.org/10.1007/s40684-019-00082-9
  3. Сарин В.А., Буш А.А. // Тонкие химические технологии. 2021. Т. 16. № 2. С. 55.
  4. Pan C., Huang B.H., Fan C. et al. // Rare Metals. 2020. V. 40. P. 1785. https://doi.org/10.1007/s12598-020-01475-5
  5. Gao W., Wen D., Ho I.C., Qu Y. // Mater. Today Chem. 2019. V. 12. P. 266. https://doi.org/10.1016/j.mtchem.2019.02.002
  6. Zhang R., Tu Z.A., Meng S. et al. // Rare Metals. 2023. V. 42. P. 176. https://doi.org/10.1007/s12598-022-02136-5
  7. Shimoda N., Kimura Y., Kobayashi Y. et al. // Int. J. Hydrogen. Energy. 2017. V. 42. P. 29745. https://doi.org/10.1016/j.ijhydene.2017.10.108
  8. Hao J., Studenikin S.A., Cocivera M. // J. Lumin. 2001. V. 93. P. 313. https://doi.org/10.1016/S0022-2313(01)00207-1
  9. Diego-Rucabado A., Segura A., Aguado F. et al. // J. Lumin. 2022. V. 252. P. 119378. https://doi.org/10.1016/j.jlumin.2022.119378
  10. Hasabeldaim E., Swart H.C., Kroon R.E. // Phys. B: Condens. Matter. 2023. V. 671. P. 415417. https://doi.org/10.1016/j.physb.2023.415417
  11. Bernard-Granger G., Guizard C., San-Miguel L. // J.Am. Ceram. Soc. 2007. V. 90. № 9. P. 2698. https://doi.org/10.1111/j.1551-2916.2007.01759.x
  12. Saratale R.G., Karuppusamy I., Saratale G.D. et al. // Colloids Surf., B. 2018. V. 180. P. 20. https://doi.org/10.1016/j.colsurfb.2018.05.045
  13. Rajakumar G., Mao L., Bao T. et al. // Appl. Sci. 2021. V. 11. № 5. P. 2172. https://doi.org/10.3390/app11052172
  14. Kannan S.K., Sundrarajan M. // Bull. Mater. Sci. 2015. V. 38. P. 945. https://doi.org/10.1007/s12034-015-0927-7
  15. Nagajyothi P.C., Pandurangan M., Veerappan M. et al. // Mater. Lett. 2018. V. 216. P. 58. https://doi.org/10.1016/j.matlet.2017.12.081
  16. Mariano-Torres J.A., Lopez-Marure A., Garcia-Hernandez M. et al. // Mater. Trans. 2018. V. 59. № 12. P. 1915. https://doi.org/10.2320/matertrans.M2018248
  17. Gaponov A.V. // Phys. B: Condens. Matter. 2022. V. 639. P. 414010. https://doi.org/10.1016/j.physb.2022.414010
  18. Li N., Yanagisawa K. // J. Solid State Chem. 2008. V. 181. № 8. P. 1738. https://doi.org/10.1016/j.jssc.2008.03.031
  19. Abdulghani A.J., Al-Ogedy W.M. // Iraqi J. Sci. 2015. V. 56. № 2. P. 1572.
  20. Levashov E.A., Mukasyan A.S., Rogachev A.S., Shtansky D.V. // Int. Mater. Rev. 2017. V. 62. № 4. P. 203. https://doi.org/10.1080/09506608.2016.1243291
  21. Gizowska M., Piatek M., Perkowski K. et al. // Nanomater. 2020. V. 10. № 5. P. 831. https://doi.org/10.3390/nano10050831
  22. Chen K., Peng J., Srinivasakannan C. et al. // J. Alloys Compd. 2018. V. 742. P. 13. https://doi.org/10.1016/j.jallcom.2018.01.258
  23. Savinkina E.V., Karavaev I.A., Grigoriev M.S. et al. // Inorg. Chim. Acta. 2022. V. 532. P. 120759. https://doi.org/10.1016/j.ica.2021.120759
  24. Savinkina E.V., Karavaev I.A., Grigoriev M.S. // Polyhedron. 2020. V. 192. P. 114875. https://doi.org/10.1016/j.poly.2020.114875
  25. Караваев И.А., Савинкина Е.В., Григорьев М.С. и др. // Журн. неорган. химии. 2020. Т. 67. № 8. С. 1080.
  26. Петричко М.И., Караваев И.А., Савинкина Е.В. и др. // Журн. неорган. химии. 2023. Т. 68. № 4. С. 482.
  27. Mangalaja R.V., Mouzon J., Hedstrom P. et al. // Powder Technol. 2009. V. 191. № 3. P. 309. https://doi.org/10.1016/j.powtec.2008.10.019
  28. Ryskaliyeva A.K., Baltbayev M.E., Zhubatova A.M. // Acta. Chim. Slov. 2018. V. 65. P. 127. https://doi.org/10.17344/acsi.2017.3683
  29. Koslowski N., Hoffmann R.C., Trouillet V. et al. // RSC Adv. 2019. V. 9. P. 31386. https://doi.org/10.1039/C9RA05348D
  30. Худайбергенова Н., Сулайманкулов К. // Журн. неорган. химии. 1981. Т. 26. С. 1156.
  31. Bruker, SAINT, Bruker AXS Inc., Madison, WI, 2018.
  32. Krause L., Herbst-Irmer R., Sheldrick G.M., Stalke D. // J. Appl. Crystallogr. 2015. V. 48. № 1. P. 3. https://doi.org/10.1107/S1600576714022985
  33. Sheldrick G.M. // Acta Crystallogr., Sect. C: Struct. Chem. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053229614024218
  34. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. P. 339 https://doi.org/10.1107/S0021889808042726
  35. Накамото К. // ИК-спектры и спектры КР неорганических и координационных соединений. М.: Мир, 1991.
  36. Hay B.P., Hancock R.D. // Coord. Chem. Rev. 2001. V. 21. № 1. P. 61. https://doi.org/10.1016/S0010-8545(00)00366-0
  37. Hay B.P., Clement O., Sandrone G., Dixon D.A. // Inorg. Chem. 1998. V. 37. № 22. P. 5887. https://doi.org/10.1021/ic980641j
  38. Schaber P.M., Colson J., Higgins S. et al. // Thermochim. Acta. 2004. V. 424. P. 131. https://doi.org/10.1016/j.tca.2004.05.018

补充文件

附件文件
动作
1. JATS XML
2. Appendix
下载 (15MB)
3. Scheme 1. Scheme for the synthesis of complex compounds I, II and III.

下载 (161KB)
4. Fig. 1. Diffractograms of precursors and isolated complexes: 1 - Ur, 2 - Y(NO3)3 - 6H2O, 3 - III (exp.), 4 - III (theor.), 5 - I (exp.), 6 - I (theor.), 7 - II (exp.), 8 - II (theor.).

下载 (269KB)
5. Fig. 2. Molecular structures of complexes I (a), II (b), III (c).

下载 (452KB)
6. Fig. 3. Thermograms of complexes I (a) and III (b) in air; 1 - mass loss curve, 2 - differential curve.

下载 (278KB)
7. Fig. 4. Diffraction patterns of Y2O3 preparations obtained by annealing complexes III (1), I (2), II (3) in air.

下载 (162KB)

版权所有 © Russian Academy of Sciences, 2024