О задачах коши для нелинейных соболевских уравнений теории сегнетоэлектричества

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Исследуются две задачи Коши для нелинейных соболевских уравнений: \(\frac{{{{\partial }^{2}}}}{{\partial {{t}^{2}}}}\frac{{{{\partial }^{2}}u}}{{\partial x_{3}^{2}}} + \Delta u = {{\left| u \right|}^{q}}\) и \(\frac{{{{\partial }^{2}}}}{{\partial {{t}^{2}}}}{{\Delta }_{ \bot }}u + \Delta u = {{\left| u \right|}^{q}}.\) Найдены условия, при которых существуют слабые обобщенные локальные во времени решения задач Коши, а также происходит разрушение слабых решений этих же задач Коши. Библ. 15.

Об авторах

М. О. Корпусов

МГУ им. М.В. Ломоносова

Email: korpusov@gmail.com
Россия, 119991, Москва, Ленинские горы, 1

Р. С. Шафир

МГУ им. М.В. Ломоносова

Автор, ответственный за переписку.
Email: romanshafir@mail.ru
Россия, 119991, Москва, Ленинские горы, 1

Список литературы

  1. Корпусов М.О., Шафир Р.С. О разрушении слабых решений задачи Коши для -мерного уравнения дрейфовых волн в плазме // Ж. вычисл. матем. и матем. физ. 2022. Т. 62. № 1. С. 124–158.
  2. Al’shin A.B., Korpusov M.O., Sveshnikov A.G. Blow-up in nonlinear Sobolev type equations // De Gruyter Series in Nonlin. Anal. Appl. 2011. V. 15. P. 648.
  3. Свиридюк Г.А. К общей теории полугрупп операторов // Успехи матем. наук. 1994. Т. 49. № 4. С. 47–74.
  4. Загребина С.А. Начально-конечная задача для уравнений соболевского типа с сильно (L,p)–радиальным оператором // Матем. заметки ЯГУ. 2012. Т. 19. № 2. С. 39–48.
  5. Zamyshlyaeva A.A., Sviridyuk G.A. Nonclassical equations of mathematical physics. Linear Sobolev type equations of higher order // Вестн. Южно-Ур. ун-та. Сер. Матем. Мех. Физ. 2016. V. 8. № 4. P. 5–16.
  6. Капитонов Б.В. Теория потенциала для уравнения малых колебаний вращающейся жидкости // Матем. сб. 1979. Т. 109(151). № 4(8). С. 607–628.
  7. Габов С.А., Свешников А.Г. Линейные задачи теории нестационарных внутренних волн. М.: Наука, 1990. С. 344.
  8. Габов С.А. Новые задачи математической теории волн. М.: Физматлит, 1998. С. 448.
  9. Плетнер Ю.Д. Фундаментальные решения операторов типа Соболева и некоторые начально-краевые задачи // Ж. вычисл. матем. и матем. физ. 1992. Т. 32. № 12. С. 1885–1899.
  10. Похожаев С.И., Митидиери Э. Априорные оценки и отсутствие решений нелинейных уравнений и неравенств в частных производных // Тр. МИАН. 2001. Т. 234. С. 3–383.
  11. Galakhov E.I. Some nonexistence results for quasilinear elliptic problems // J. Math. Anal. Appl. 2000. V. 252. № 1. P. 256–277.
  12. Галахов Е.И., Салиева О.А. Об отсутствии неотрицательных монотонных решений для некоторых коэрцитивных неравенств в полупространстве // СФМН. 2017. Т. 63. № 4. С. 573–585.
  13. Корпусов М.О. Критические показатели мгновенного разрушения или локальной разрешимости нелинейных уравнений соболевского типа // Изв. РАН. Сер. матем. 2015. Т. 79. № 5. С. 103–162.
  14. Корпусов М.О. О разрушении решений нелинейных уравнений типа уравнения Хохлова–Заболотской // ТМФ. 2018. Т. 194. № 3. С. 403–417.
  15. Korpusov M.O., Ovchinnikov A.V., Panin A.A. Instantaneous blow-up versus local solvability of solutions to the Cauchy problem for the equation of a semiconductor in a magnetic field // Math. Meth. Appl. Sci. 2018. V. 41. № 17. P. 8070–8099.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© М.О. Корпусов, Р.С. Шафир, 2022