Calculation of nth Derivative with Minimum Error Based on Function’s Measurement

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A solution of the problem that arises in all cases where it is required to approximately calculate the derivatives of an a priori smooth function by its experimental discrete values is proposed. The problem is reduced to finding an “optimal” step of difference approximation. This problem has been studied by many mathematicians. It turned out that to find an optimal approximation step for the kth-order derivative, it is required to know a highly accurate estimate of the modulus of the derivative of order k+1. The proposed algorithm, which gives such an estimate, is applied to the problem of thrombin concentration, which determines the dynamics of blood coagulation. This dynamics is represented by plots and provides a solution of the thrombin concentration problem, which is of interest to biophysicists.

Sobre autores

A. Kochurov

Moscow State University; Moscow Center of Fundamental and Applied Mathematics

Email: kchrvas@yandex.ru
119234, Moscow, Russia; 119991, Moscow, Russia

A. Demidov

Moscow State University; Moscow Institute of Physics and Technology; Peoples’ Friendship University of Russia (RUDN University)

Autor responsável pela correspondência
Email: demidov.alexandre@gmail.com
119234, Moscow, Russia; 123098, Moscow; 115419, Moscow, Russia

Bibliografia

  1. Dunster J.L., Gibbins J.M., Panteleev M.A., Volpert V. Modeling thrombosis in silico: Frontiers, challenges, unresolved problems and milestones // Physics of Life Reviews. 2018. Vol. 26–27. P. 57–95. https://doi.org/10.1016/j.plrev.2018.02.005
  2. Panteleev M.A., Dashkevich N.M., Ataullakhanov F.I. Hemostasis and thrombosis beyond biochemistry: roles of geometry, flow and diffusion // Thrombosis Research. 2015. Vol. 136. No 4. P. 699–711. Epub 2015 Jul 29. Review. PubMed PMID: 26278966.https://doi.org/10.1016/j.thromres.2015.07.025
  3. Атауллаханов Ф.И., Лобанова Е.С., Морозова О.Л., Шноль Э.Э., Ермакова Е.А., Бутылин А.А., Заикин А.Н. Сложные режимы распространения возбуждения и самоорганизация в модели свертывания крови // Успехи физ. наук. 2007. Т. 177. № 1. С. 87–104.
  4. Арестов В.В., Акопян Р.Р. Задача Стечкина о наилучшем приближении неограниченного оператора ограниченными и родственные ей задачи // Тр. Ин-та матем. и механ. УрО РАН. 2020. Т. 26. № 4. С. 7‒31.
  5. Стечкин С.Б. Неравенства между нормами производных произвольной функции // Acta scient. math. 1965. Vol. 26. № 3–4. P. 225–230.
  6. Арестов В.В. О наилучшем приближении операторов дифференцирования // Матем. заметки. 1967. Т. 1. № 2. С. 149–154.
  7. Буслаев А.П. О приближении оператора дифференцирования // Матем. заметки. 1981. Т. 29. № 5. С. 372–378.
  8. Бабенко К.И. Основы численного анализа. Москва-Ижевск: НИЦ “Регулярная и хаотическая динамика”, 2002. С. 3–847.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (97KB)
3.

Baixar (48KB)
4.

Baixar (69KB)
5.

Baixar (48KB)
6.

Baixar (62KB)
7.

Baixar (992KB)
8.

Baixar (929KB)

Declaração de direitos autorais © А.С. Демидов, А.С. Кочуров, 2023