An Improved Difference Scheme for the Cauchy Problem in the Case of a Transport Equation
- Autores: Shishkin G.I.1, Shishkina L.P.1
-
Afiliações:
- Krasovskii Institute of Mathematics and Mechanics, Ural Branch, Russian Academy of Sciences
- Edição: Volume 63, Nº 8 (2023)
- Páginas: 1272-1278
- Seção: General numerical methods
- URL: https://rjonco.com/0044-4669/article/view/664994
- DOI: https://doi.org/10.31857/S0044466923080136
- EDN: https://elibrary.ru/WTFQVG
- ID: 664994
Citar
Resumo
The Cauchy problem for the regular transport equation is considered. The Richardson technique is used to construct an improved difference scheme that converges in the maximum norm with the second order of convergence.
Sobre autores
G. Shishkin
Krasovskii Institute of Mathematics and Mechanics, Ural Branch, Russian Academy of Sciences
Email: shishkin@imm.uran.ru
620108, Yekaterinburg, Russia
L. Shishkina
Krasovskii Institute of Mathematics and Mechanics, Ural Branch, Russian Academy of Sciences
Autor responsável pela correspondência
Email: shishkin@imm.uran.ru
620108, Yekaterinburg, Russia
Bibliografia
- Марчук Г.И. Методы вычислительной математики. М.: Наука, 1989. 608 с.
- Марчук Г.И., Шайдуров В.В. Повышение точности решений разностных схем. М.: Наука, 1979. 320 с.
- Самарский А.А. Теория разностных схем. М.: Наука, 1989. 616 с.
- Shishkin G.I., Shishkina L.P. Difference Methods for Singular Perturbation Problems. V. 140 of Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics. Boca Raton: CRC Press, 2009. 408 p.
- Калиткин Н.Н. Численные методы. М.: Наука, 1978. 512 с.
- Шишкин Г.И. Разностная схема для начально-краевой задачи для сингулярно возмущенного уравнения переноса // Ж. вычисл. матем. и матем. физ. 2017. Т. 57. № 11. С. 1824–1830.
Arquivos suplementares
