On the Structure of Solutions to the Key Gosper Equation in Problems of Symbolic Summation

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The structure of polynomial solutions to the Gosper’s key equation is analyzed. A method for rapid “extraction” of simple high-degree factors of the solution is given. It is shown that in cases when equation corresponds to a summable non-rational hypergeometric term the Gosper’s algorithm can be accelerated by removing non-essential dependency of its running time on the value of dispersion of its rational certificate.

作者简介

E. Zima

Wilfrid Laurier University

编辑信件的主要联系方式.
Email: ezima@wlu.ca
Waterloo, Canada

参考

  1. Абрамов С.А. О суммировании рациональных функций // Ж. вычисл. матем. и матем. физ. 1971. Т. 11. № 4. С. 1071–1075.
  2. Gosper R.W., Jr. Decision procedure for indefinite hypergeometric summation // Proc. Nat. Acad. Sci. U.S.A., 75(1):40–42, 1978.
  3. Abramov S.A., Petkovšek M. Rational normal forms and minimal decompositions of hypergeometric terms // J. of Symbolic Computation, 33(5):521–543, 2002.
  4. Maple User Manual. Maplesoft, a division of Waterloo Maple Inc., 1996–2021.
  5. Абрамов С.А. Элементы компьютерной алгебры линейных обыкновенных дифференциальных, разностных и q-разностных операторов. М: МЦМНО, 2012.
  6. Moenck R. On computing closed forms for summations // In Proc. of the 1977 MACSYMA Users’ Conference, pp. 225–236, 1977.
  7. Petkovšek M. Hypergeometric solutions of linear recurrences with polynomial coefficients // J. of Symbolic C-omputation, 14(2):243–264, 1992.
  8. Lisonek P., Paule P., Strehl V. Improvement of the degree setting in Gosper’s algorithm // J. of Symbolic Computation, 16 (1993), 243–258.
  9. Pirastu R., Strehl V. Rational summation and Gosper-Petkovsšek representation // J. Symb. Comput., 20(5‑6):617–635, Nov. 1995.
  10. Zima E.V. Accelerating indefinite hypergeometric summation algorithms // ACM Commun. Comput. Algebra, 52(3):96–99, 2019.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Е.В. Зима, 2023