Stability and Error Estimates of High Order BDF-LDG Discretizations for the Allen–Cahn Equation

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We construct high order local discontinuous Galerkin (LDG) discretizations coupled with third and fourth order backward differentiation formulas (BDF) for the Allen–Cahn equation. The numerical discretizations capture the advantages of linearity and high order accuracy in both space and time. We analyze the stability and error estimates of the time third-order and fourth-order BDF-LDG discretizations for numerically solving Allen–Cahn equation respectively. Theoretical analysis shows the stability and the optimal error results of theses numerical discretizations, in the sense that the time step τ requires only a positive upper bound and is independent of the mesh size h. A series of numerical examples show the correctness of the theoretical analysis. Comparison with the first-order numerical discretization illustrates that the high order BDF-LDG discretizations show good performance in solving stiff problems.

作者简介

Fengna Yan

HFUT

Email: fnyan@hfut.edu.cn
230009, Hefei, China

Ziqiang Cheng

HFUT

编辑信件的主要联系方式.
Email: czq10491@hfut.edu.cn
230009, Hefei, China

参考

补充文件

附件文件
动作
1. JATS XML

版权所有 © Fengna Yan, Ziqiang Cheng, 2023