Three-Level Schemes with Double Change in the Time Step

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Nonstationary problems are solved numerically by applying multilevel (with more than two levels) time approximations. They are easy to construct and relatively easy to study in the case of uniform grids. However, the numerical study of application-oriented problems often involves approximations with a variable time step. The construction of multilevel schemes on nonuniform grids is associated with maintaining the prescribed accuracy and ensuring the stability of the approximate solution. In this paper, three-level schemes for the approximate solution of the Cauchy problem for a second-order evolution equation are constructed in the special case of a doubled or halved step size. The focus is on the approximation features in the transition between different step sizes. The study is based on general results of the stability (well-posedness) theory of operator-difference schemes in a finite-dimensional Hilbert space. Estimates for stability with respect to initial data and the right-hand side are obtained in the case of a doubled or halved time step.

作者简介

P. Vabishchevich

Nuclear Safety Institute, Russian Academy of Sciences;
Ammosov North-Eastern Federal University

编辑信件的主要联系方式.
Email: vabishchevich@gmail.com
115191, Moscow, Russia; 677007, Yakutsk, Russia

参考

  1. Hairer E., Wanner G. Solving Ordinary Differential Equations. II: Stiff and Differential-Algebraic Problems. Berlin: Springer, 1996.
  2. LeVeque R.J. Finite Difference Methods for Ordinary and Partial Differential Equations. Steady-State and Time-Dependent Problems. Philadelphia: SIAM, 2007.
  3. Вабищевич П.Н. Численные методы решения нестационарных задач. М.: ЛЕНАНД, 2021.
  4. Samarskii A.A. The Theory of Difference Schemes. New York: Marcel Dekker, 2001.
  5. Самарский А.А., Гулин А.В. Устойчивость разностных схем. М.: Наука, 1973.
  6. Samarskii A.A., Matus P.P., Vabishchevich P.N. Difference Schemes with Operator Factors. Dordrecht: Kluwer, 2002.
  7. Самарский А.А., Вабищевич П.Н., Макаревич Е.Л., Матус П.П. Устойчивость трехслойных разностных схем на неравномерных по времени сетках // Докл. АН. 2001. Т. 376. № 6. С. 738–741.
  8. Matus P., Zyuzina E. Three-level difference schemes on non-uniform in time grids // Comput. Meth. Appl. Math. 2001. V. 1. № 3. P. 265–284.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (8KB)
3.

下载 (9KB)

版权所有 © П.Н. Вабищевич, 2023