Interaction of Boundary Singular Points in an Elliptic Boundary Value Problem
- 作者: Bogovskii A.M.1
-
隶属关系:
- Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University
- 期: 卷 63, 编号 9 (2023)
- 页面: 1524-1530
- 栏目: Partial Differential Equations
- URL: https://rjonco.com/0044-4669/article/view/664989
- DOI: https://doi.org/10.31857/S0044466923090041
- EDN: https://elibrary.ru/RJMDHQ
- ID: 664989
如何引用文章
详细
The paper continues the construction of the Lp-theory of elliptic Dirichlet and Neumann boundary value problems with discontinuous piecewise constant coefficients in divergent form for an unbounded domain R2 with a piecewise
smooth noncompact Lipschitz boundary and C1 smooth discontinuity lines of the coefficients. An earlier constructed Lp-theory is generalized to the case of different smallest eigenvalues corresponding to a finite and an infinite singular point, and the effect of their interaction is further studied in the class of functions with first derivatives from Lp( ) in the entire range of the exponent p (1, ).
.
关键词
作者简介
A. Bogovskii
Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University
编辑信件的主要联系方式.
Email: abogovski@gmail.com
119991, Moscow, Russia
参考
- Денисов В.Н., Боговский А.М. О взаимодействии граничных особых точек в задаче Дирихле для эллиптического уравнения с кусочно-постоянными коэффициентами в плоской области // Ж. вычисл. матем. и матем. физ. 2019. Т. 59. № 12. С. 2155–2174.
- Денисов В.Н., Боговский А.М. О взаимосвязи слабых решений эллиптических краевых задач Дирихле и Неймана для плоской односвязной области // Матем. заметки. 2020. Т. 107. № 1. С. 32–48.
- Brezis H. Functional analysis, Sobolev spaces and partial differential equations. Universitext. New York: Springer, 2011.
