Interaction of Boundary Singular Points in an Elliptic Boundary Value Problem

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The paper continues the construction of the Lp-theory of elliptic Dirichlet and Neumann boundary value problems with discontinuous piecewise constant coefficients in divergent form for an unbounded domain  R2 with a piecewise 
 smooth noncompact Lipschitz boundary and C1 smooth discontinuity lines of the coefficients. An earlier constructed Lp-theory is generalized to the case of different smallest eigenvalues corresponding to a finite and an infinite singular point, and the effect of their interaction is further studied in the class of functions with first derivatives from Lp( ) in the entire range of the exponent p (1, ).
.

作者简介

A. Bogovskii

Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University

编辑信件的主要联系方式.
Email: abogovski@gmail.com
119991, Moscow, Russia

参考

  1. Денисов В.Н., Боговский А.М. О взаимодействии граничных особых точек в задаче Дирихле для эллиптического уравнения с кусочно-постоянными коэффициентами в плоской области // Ж. вычисл. матем. и матем. физ. 2019. Т. 59. № 12. С. 2155–2174.
  2. Денисов В.Н., Боговский А.М. О взаимосвязи слабых решений эллиптических краевых задач Дирихле и Неймана для плоской односвязной области // Матем. заметки. 2020. Т. 107. № 1. С. 32–48.
  3. Brezis H. Functional analysis, Sobolev spaces and partial differential equations. Universitext. New York: Springer, 2011.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (45KB)

版权所有 © А.М. Боговский, 2023