Algorithms for solving the inverse scattering problem for the Manakov model
- 作者: Belaiа O.V.1, Frumin L.L.1, Chernyavsky A.E.1
-
隶属关系:
- Institute of Automation and Electrometry, Siberian Branch, RAS
- 期: 卷 64, 编号 3 (2024)
- 页面: 486-498
- 栏目: Mathematical physics
- URL: https://rjonco.com/0044-4669/article/view/665095
- DOI: https://doi.org/10.31857/S0044466924030091
- EDN: https://elibrary.ru/XGHJFH
- ID: 665095
如何引用文章
详细
The paper considers algorithms for solving inverse scattering problems based on the discretization of the Gelfand–Levitan–Marchenko integral equations, associated with the system of nonlinear Schrödinger equations of the Manakov model. The numerical algorithm of the first order approximation for solving the scattering problem is reduced to the inversion of a series of nested block Toeplitz matrices using the Levinson-type bordering method. Increasing the approximation accuracy violates the Toeplitz structure of block matrices. Two algorithms are described that solve this problem for second order accuracy. One algorithm uses a block version of the Levinson bordering algorithm, which recovers the Toeplitz structure of the matrix by moving some terms of the systems of equations to the right-hand side. Another algorithm is based on the Toeplitz decomposition of an almost block-Toeplitz matrix and the Tyrtyshnikov bordering algorithm. The speed and accuracy of calculations using the presented algorithms are compared on an exact solution (the Manakov vector soliton).
全文:

作者简介
O. Belaiа
Institute of Automation and Electrometry, Siberian Branch, RAS
编辑信件的主要联系方式.
Email: ovbelai@gmail.com
俄罗斯联邦, Acad. Koptyug Ave. 1, Novosibirsk, 630090
L. Frumin
Institute of Automation and Electrometry, Siberian Branch, RAS
Email: lfrumin@iae.nsk.su
俄罗斯联邦, Acad. Koptyug Ave. 1, Novosibirsk, 630090
A. Chernyavsky
Institute of Automation and Electrometry, Siberian Branch, RAS
Email: alexander.cher.99@gmail.com
俄罗斯联邦, Acad. Koptyug Ave. 1, Novosibirsk, 630090
参考
- Манаков С.В. К теории двумерной стационарной самофокусировки электромагнитных волн // Ж. эксперим. и теор. физ. 1973. Т. 65. № 2. С. 505.
- Агравал Г. Нелинейная волоконная оптика. М.: Мир, 1995. 848 с.
- Захаров В.Е., Шабат А.Б. Точная теория двумерной самофокусировки и одномерной автомодуляции волн в нелинейных средах // Ж. эксперим. и теор. физ. 1971. Т. 61. С. 118.
- Захаров В.Е., Манаков С.В. , Новиков С.П., Питаевский Л.П. Теория солитонов. Метод обратной задачи, М.: Наука, 1980. 319 c.
- Maimistov A.I., Basharov A.M., Elyutin S.O., Sklyarov Y.M. Present state of self-induced transparency theory // Phys. Reports. 1990. V. 191. Nо. 1. P. 1.
- Maimistov A.I., Basharov A.M. Nonlinear optical waves. Dordrecht, Springer Science and Business Media, 2013.
- Frumin L.L. Algorithms for solving scattering problems for the Manakov model of nonlinear Schrödinger equations // J. of Inv. and Ill-posed Probl. 2021. V. 29. Nо. 2. P. 369.
- Belai O.V., Frumin L.L., Podivilov E.V., Shapiro D.A. Efficient numerical method of the fiber Bragg grating synthesis // J. Opt. Soc. Am. B. 2007. V. 24. Nо. 7. P. 1451.
- Frumin L.L., Belai O.V., Podivilov E.V., Shapiro D.A. Efficient numerical method for solving the direct Zakharov-Shabat scattering problem // J. Opt. Soc. Am. B. 2015. V. 32. P. 290.
- Блейхут Р. Быстрые алгоритмы цифровой обработки сигналов. М.: Мир, 1989. 448 c.
- Buryak A., Bland-Hawthorn J., Steblina V. Comparison of Inverse Scattering Algorithms for Designing Ultrabroadband Fibre Bragg Gratings // Optics Express 2009. V. 17. Nо. 3. P. 1995.
- Belai O.V., Frumin L.L., Podivilov E.V., Shapiro D.A. Inverse scattering problem for gratings with deep modulation // Laser Physics. 2010. V. 20. N 2. P. 318.
- Belai O.V., Frumin L.L., Podivilov E.V., Shapiro D.A. Inverse scattering for the one-dimensional Helmholtz equation: fast numerical method // Optics Letters. 2008. V. 33. Nо. 18. P. 2101.
- Frumin L.L., Gelash A.A., Turitsyn S.K. New Approaches to Coding Information using Inverse Scattering Transform // Phys. Rev. Letters. 2017. V. 118. Nо. 22. P. 223901.
- Turitsyn S.K., Prilepsky J.E., Le S.T., Wahls S., Frumin L.L., Kamalian M., Derevyanko S.A. Nonlinear Fourier transform for optical data processing and transmission: advances and perspectives // Optica. 2017. V. 4. Nо 3. P. 307.
- Тыртышников Е.Е. Тёплицевы матрицы, некоторые их аналоги и приложения. М.: Изд. АН СССР, 1989. 310 с.
- Тыртышников Е.Е. Новые быстрые алгоритмы для систем с ганкелевой и тёплицевой матрицами // Ж. вычисл. матем. и матем. физ. 1989. Т. 29. № 5. С. 645.
- Akaike H. Block Toeplitz matrix inversion // SIAM J. Appl. Math. 1973. V. 24. Nо 2. P. 234.
- Белай О.В. Быстрый численный метод второго порядка точности решения обратной задачи рассеяния // Квант. Электроника. 2022. Т. 52. № 11. С. 1039.
- Воеводин В.В., Тыртышников Е.Е. Вычислительные процессы с тёплицевыми матрицами. М.: Наука, 1987. 320 с.
补充文件
