On Preserving Spherical Symmetry on a Spherical Grid in the Cartesian Coordinate System When Calculating Gas-Dynamic Currents by Euler Finite-Volume Schemes

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

The sufficient conditions for finite-volume Euler schemes for calculating gas-dynamic currents in the Cartesian coordinate system using the Gaussian method for the divergence and gradient operators and the midpoint method for approximating integrals over cell faces to preserve spherical symmetry on a spherical grid are determined. Two approaches to ensuring the geometric condition on the ratio of the areas of the corner faces to the volume of the cell are proposed, viz. correction of areas and special selection of partitioning with respect to the polar angle. As an example of preserving the symmetry when the sufficient conditions are met, the calculation of the spherical problem of discontinuity breakdown by the Euler scheme of the Godunov type is considered.

作者简介

I. Glazyrin

FSUE RFNC-VNIITF named after Acad. E.I. Zababakhin

Email: i.v.glazyrin@vniitf.ru
Snezhinsk, Chelyabinsk region, Russia

N. Mikhaylov

FSUE RFNC-VNIITF named after Acad. E.I. Zababakhin

Email: n.a.mikhaylov@vniitf.ru
Snezhinsk, Chelyabinsk region, Russia

N. Frolova

FSUE RFNC-VNIITF named after Acad. E.I. Zababakhin

Email: natalya.l.frolova@mail.ru
Snezhinsk, Chelyabinsk region, Russia

M. Chizhkov

FSUE RFNC-VNIITF named after Acad. E.I. Zababakhin

Email: m.n.chizhkov@vniitf.ru
Snezhinsk, Chelyabinsk region, Russia

参考

  1. Ye Zhou. Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. Part II // Physics Reports. 2017. V. 720–722. P. 1–136.
  2. Caramana E.G., Walen P.P. Numerical preservation of symmetry properties of continuum problems // J. Comput. Phys. 1998. V. 141. P. 174–198.
  3. Margolin L., Shashkov M. Using a curvilinear grid to construct symmetry-preserving discretizations for Lagrangian gas dynamics // J. Comput. Phys. 1999. V. 149. P. 389–417.
  4. Caramana E.G., Rousculp C.L., Burton D.E. A compatible, energy and symmetry preserving Lagrangian hydrodynamics algorithm in three-dimansional Cartisian geometry // J. Comput. Phys. 2000. V. 157. P. 89–119.
  5. Ling D., Cheng J., Shu C.-W. Positivity-preserving and symmetry-preserving Lagrangian schemes for compressible Euler equations in cylindrical coordinates // Computer and Fluids. 2017. V. 157. P. 112–130.
  6. Kenamond M., Bement M., Shashkov M. Compatible, total energy conserving and symmetry preserving arbitrary Lagrangian-Eulerian hydrodynamics in 2D rz-cylindrical coordinates // J. Comput. Phys. 2014. V. 268. P. 154–185.
  7. Guo S., Zhang M., Zhou H., Xiong J., Zhang S. A symmetry preserving scheme for three-dimensional LAgrangian radiation hydrodynamic simulations of ICF capsule implosion // Computer and Fluids. 2019. V. 195. 104317.
  8. Getings M., Weaver R., Clover M., Betlach T., Byrne N., Coker R., Dendy E., Hueckstaedt R., New K., Oakes W.R., Ranta D., Stefan R. The RAGE radiation-hydrodynamic code // Computational Science and Discovery. 2008. 1 (1).
  9. Fryxell B., Olson K., Ricker P., Timmes F.X., Zingale M., Lamb D.Q., MacNeice P., Rosner R., Truran J.W., Tufo H. FLASH: An adaptive mesh hydrodynamics code for modeling astrophysical thermonuclear flashes // Astrophysical Journal Supplement. 2000. V. 131. P. 273–334.
  10. Лебо И.Г., Тишкин В.Ф. Исследование гидродинамических неустойчивостей в задачах лазерного термоядерного синтеза методами математического моделирования. М.: ФИЗМАТЛИТ, 2006, 304 c.
  11. Глазырин И.В., Михайлов Н.А. Конечно-объемная схема для многокомпонентных сжимаемых течений на неструктурированной сетке в трехмерной программе Фокус // Ж. вычисл. матем. и матем. физ. 2021. Т. 61. №6. С. 1019–1033.
  12. Toro E.F. Riemann solvers and numerical methods for fluid dynamics: a practical introduction. Berlin: Springer, 2009. 3rd ed. 721 p.
  13. Darwish M.S., Moukalled F. TVD schemes for unstructured grids // Int. J. of Heat and Mass Transfer. 2003. V. 46. P. 599–611.
  14. Матяш C.В. Новый метод использования принципа минимальных приращений в численных схемах второго порядка аппроксимации // Уч. зап. ЦАГИ. 2005. Т. 36. №3–4. С. 42–51.
  15. Куропатенко В.Ф., Коваленко Г.В., Кузнецова В.И., Михайлова Г.И., Сапожникова Г.Н. Комплекс программ «Волна» и неоднородный разностный метод для расчета неустановившихся движений сжимаемых сплошных сред. Часть 1. Неоднородный разностный метод // ВАНТ. Сер. Матем. моделирование физ. процессов. 1989. В. 2. С. 9–25.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025