True lemmings (Lemmini, Arvicolinae, Rodentia) in the Eopleistocene (Calabrian) in the North of western Siberia

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

Based on zoological collections and published information, morphological characteristics of the teeth and mandibles of Lemmus cf. sibiricus from the Eopleistocene Skorodumian faunal complex of western Siberia are compared with those of modern and fossil Lemmini from Europe and Asia so as to clarify the taxonomic identity and determine the place of the fossil form under consideration in the evolutionary history of the Palaearctic Lemmini. Comparative morphological approaches based on qualitative traits and linear measurements of cheek teeth, traditionally used for taxonomic diagnostics of representatives of the tribe, are used. according to the combination of apomorphic and plesiomorphic features, lemmings from the Skorodumian faunal complex of the Eopleistocene of western Siberia are shown to occupy a position intermediate between the more ancient L. kowalskii and the modern species Lemmus sibiricus. According to this intermediate position between the ancestral widespread form and the modern regional taxa of the genus Lemmus, the West Siberian Eopleistocene lemmings correspond to the East Siberian Lemmus sheri Abramson, 1992. The differences between L. kowalskii and the Eopleistocene forms are clearly recognizable and reflect the evolutionary changes in the cheek teeth associated with the transition of the Eopleistocene forms to a higher level of specialization in bryophagy. At the same time, the morphological similarity of the western and eastern Siberian Eopleistocene lemmings to each other is no higher than that of each of the regional forms to modern Lemmus inhabiting the same regions. Based on this, within the Eurasian range of the Eopleistocene Lemmus, differentiation comparable to the intrageneric differentiation within modern Lemmus could presumably have been observed. The combination of similarities in some features and differences in others most likely reflects mosaic morphological variations across the Eopleistocene range of one form, possibly a polytypic taxon, which by right of priority should be termed as Lemmus sheri Abramson, 1992. Taking into account the presence of regional features, it seems appropriate to consider the Eopleistocene lemmings of the Olerian Formation of eastern Siberia as L. sheri sensu stricto, and the lemmings from the Skorodumian faunal complex of western Siberia as the polytypic taxon L. sheri sensu lato.

Texto integral

Acesso é fechado

Sobre autores

E. Markova

Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences

Autor responsável pela correspondência
Email: emrk@yandex.ru
Rússia, st. March 8, 202, Yekaterinburg, 620144

A. Borodin

Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences; Ural Federal University

Email: bor@ipae.uran.ru
Rússia, st. March 8, 202, Yekaterinburg, 620144; prospect Lenina, 51, Yekaterinburg, 620075

Bibliografia

  1. Абрамсон Н. И., Лисовский А. А., 2012. Подсемейство Arvicolinae // Павлинов И. Я., Лисовский А. А. (ред.). Млекопитающие России. Систематико-географический справочник. М.: Товарищество научных изданий КМК. С. 220–276.
  2. Бондарев А. А., Тесаков А. С., Бородин А. В., 2018. Новые данные по фаунам мелких млекопитающих эоплейстоцена Нижнего Прииртышья // Фундаментальная и прикладная палеонтология: Материалы LXIV сессии Палеонтологического общества / Под ред. Богданова Т. Н. и др. СПб.: Картфабрика ВСЕГЕИ. С. 184–185.
  3. Бородин А. В., 2009. Определитель зубов полевок Урала и Западной Сибири (поздний плейстоцен – современность). Екатеринбург: УрО РАН. 100 с.
  4. Бородин А. В., Маркова Е. А., Струкова Т. В., 2019. Подход к унификации межзональных и межрегиональных корреляций фаунистических комплексов млекопитающих в широтных зонах Северной Евразии (на примере фаун полевок четвертичного периода) // Зоологический журнал. T. 98. № 10. С. 1137–1147.
  5. Вирина Е. И., Зажигин В. С., Шер А. В., 1984. Палеомагнитная характеристика типовых местонахождений олерского фаунистического комплекса (Колымская низменность) // Известия АН СССР. Серия Геол. № 11. С. 61–72.
  6. Животовский Л. А., 1979. Показатели популяционной изменчивости по полиморфным признакам // Журнал общей биологии. Т. 40. С. 587–602.
  7. Зажигин В. С., 1980. Грызуны позднего плиоцена и антропогена юга Западной Сибири. М.: Наука. 156 с.
  8. Зыкин В. С., Зыкина В. С., Орлова Л. А., 2000. Стратиграфия и основные закономерности изменения природной среды и климата в плейстоцене и голоцене Западной Сибири // Археология, этнография и антропология Евразии. № 1 (1). С. 3–22.
  9. Круковер А. А., 1992. Четвертичные микротериофауны приледниковой и внеледниковой зон Западной Сибири: автореф. дис. … канд. геол.-минерал. наук. Новосибирск. 19 с.
  10. Маркова Е. А., 2013. Оценка сложности щечных зубов полевок (Arvicolinae, Rodentia): ранжированный морфотипический подход // Зоологический журнал. Т. 92. № 8. С. 968–980.
  11. Маркова Е. А., Бобрецов А. В., Стариков В. П., Чепраков М. И., Бородин А. В., 2018. Унификация критериев выделения морфотипов щечных зубов леммингов (Lemmini, Arvicolinae, Rodentia) // Зоологический журнал. Т. 97. № 5. C. 613–626.
  12. Минюк П. С., 2006. Граница хронов матуяма – брюнес и ее стратиграфическое значение в отложениях плейстоцена севера Дальнего Востока // Тихоокеанская геология. Т. 25. № 3. С. 29–39.
  13. Смирнов Н. Г., Большаков В. Н., Бородин А. В., 1986. Плейстоценовые грызуны севера Западной Сибири. М.: Наука. 145 с.
  14. Смирнов Н. Г., Головачев И. Б., Бачура О. П., Кузнецова И. А., Чепраков М. И., 1997. Сложные случаи определения зубов грызунов из отложений позднего плейстоцена и голоцена тундровых районов Северной Евразии // Материалы по истории и современному состоянию фауны севера Западной Сибири / Сост. П. А. Косинцев. Челябинск: Рифей. С. 60–90.
  15. Стратиграфия СССР. Четвертичная система, 1982. М.: Недра. 443 с.
  16. Сухов В. П., 1977. Мелкие позвоночные / Горецкий Г. И. (ред.), Фауна и флора Симбугино. М.: Наука. С. 121–139.
  17. Хензыхенова Ф. И., 2003. Мелкие млекопитающие Байкальского региона в среднем неоплейстоцене – раннем голоцене: автореф. дис. … канд. биол. наук. Новосибирск. 23 с.
  18. Abramson N. I., Bodrov S. Y., Bondareva O. V., Genelt-Yanovskiy E.A., Petrova T. V., 2021. A mitochondrial genome phylogeny of voles and lemmings (Rodentia: Arvicolinae): Evolutionary and taxonomic implications // PLoS ONE. V. 1. № 11. e0248198.
  19. Abramson N. I., 1992. A new species of lemming from the Eopleistocene of North East Siberia (Mammalia: Cricetidae) // Zoosystematica Rossica. № 1 (1). P. 156–160.
  20. Abramson N. I., 1993. Evolutionary trends in the dentition of true lemmings (Lemmini, Cricetidae, Rodentia): functional-adaptive analysis // Journal of Zoology. V. 230. P. 687–699.
  21. Abramson N. I., Nadachowski A., 2001. Revision of fossil lemmings (Lemminae) from Poland with special reference to the occurrence of Synaptomys in Eurasia // Acta Zool. Cracov. V. 44. № 1. P. 65–77.
  22. Arbez L., Royer A., Schreve D., Laffont R., David S., Montuire S., 2021. The missing Myopus: plugging the gaps in Late Pleistocene small mammal identification in western Europe with geometric morphometrics // Journal of Quaternary Science. V. 36. № 2. P. 224–238.
  23. Arbez L., Hadravová T., Royer A., Montuire S., Fejfar O., Horáček I., 2024. Re-investigation of fossil Lemmini specimens from the early and Middle Pleistocene of Western and Central Europe: evolutionary and paleoenvironmental implications // Palaeogeography, Palaeoclimatology, Palaeoecology. V. 641. 112128. P. 1–15.
  24. Baltensperger A. P., Hagelin J. C., Schuette P. A., Droghini A., Ott K., 2022. High dietary and habitat diversity indicate generalist behaviors of northern bog lemmings Synaptomys borealis in Alaska, USA // Endangered Species Research. V. 49. P. 145–158.
  25. Borodin A. V., 1996. Quaternary faunas of small mammals from the West-Sibirian Plain // Acta Zoologica Cracoviensia. V. 39. № 1. P. 75–81.
  26. Borodin A. V., Strukova T. V., Markova E. A., 2019. Calabrian (Eopleistocene) micromammal assemblages from the lacustrine and fluvial deposits of the Southern Trans-Urals and chronological position of some regional stratigraphic units // Quaternary International. V. 534. P. 89–102.
  27. Carls N., Rabeder G., 1988. Arvicolids (Rodentia, Mammali·a) from the Earliest Pleistocene of Schernfeld (Bavaria) // Beiträge zur Paläontologie von Österreich. V. 14. P. 123–237.
  28. Chaline J., Brunet-Lecomte P., Brochet G., Martin F., 1989. Les Lemmings Fossiles Du Genere Lemmus (Arvicolidae, Rodentia) Dans Le Pleistocene De France // Geobios. № 22, fasc. 5. P. 613–623.
  29. Chaline J., Brunet-Lecomte P., Kaikusalo A., Martin F., Brochet G., 1988. Discrimination de la morphologie dentaire de Lemmus lemmus et Myopus schisticolor (Arvicolidae, Rodentia) par l’analyse multivariée // Mammalia. V. 52. № 2. P. 259–274.
  30. Eskelinen O., 2004. Studies on the ecology of the wood lemming, Myopus schisticolor. Joensuu: University of Joensuu. 74 p.
  31. Fejfar O., Repenning Ch.A., 1998. The ancestors of lemmings (Lemmini, Arvicolidae, Cricetidae, Rodentia) in the early Pliocene of Wölfersheim near Frankfurt am Main; Germany // Senckenbergia Lethaea. V. 77. P. 161–193.
  32. Fejfar O., Heinrich W. D., Kordos L., Maul L. C., 2011. Microtoid cricetids and the early history of arvicolids (Mammalia, Rodentia) // Palaeontol. Electron. 14: 27A:38 p.
  33. Glime J. M., 2018. Rodents – Muroidea: Muridae. Chapt. 17–1. In: Glime, J. M. Bryophyte Ecology. V. 2. Bryological Interaction. eBook sponsored by Michigan Technological University and the International Association of Bryologists. Last updated 26 January 2018 and available at https://digitalcommons.mtu.edu/bryophyte-ecology2/
  34. Harrison D. L., Bates P. J.J., Clayden J. D., 1989. Occurrence of Lemmus kowalskii Carls and Rabeder, 1988 (Rodentia: Micortinae: Lemmus) in the Lower Pleistocene of East Anglia // Acta Theriologica. V. 34. № 3. P. 55–65.
  35. Kolfschoten T. van, Tesakov A. S., Bell C. J., 2018. The first record of Phenacomys (Mammalia, Rodentia, Cricetidae) in Europe (early Pleistocene, Zuurland, The Netherlands) // Quaternary Science Reviews. V. 192. P. 274–281.
  36. Kowalski K., 1977. Fossil lemmings (Mammalia, Rodentia) from the Pliocene and Early Pleistocene of Poland // Acta Zoologica Cracoviensia. V. 22. P. 297–318.
  37. Kowalski K., Hasegawa Y., 1976. Quaternary Rodents from Japan // Bulletin of National Science Museum Series. V. 2. № 1. P. 31–66.
  38. Königswald W von, Martin L. D., 1984. Revision of the fossil and recent Lemminae (Rodentia, Mammalia) / Mengel R. M. (ed.). Papers in Paleontology Honoring Robert Warren Wilson. Pittsburgh: Carnegie Museum Natural History Special Publication. V. 9. P. 122–137.
  39. Krukover A., 2007. Quaternary arvicolid faunas of the southern West Siberian Plain // Cour. Forsch.-Inst. Senkenberg. V. 259. P. 93–98.
  40. Kryštufek B., Shenbrot G. I., 2022. Voles and Lemmings (Arvicolinae) of the Palaearctic Region. University of Maribor, University Press, 1st edition. 437 p.
  41. Maul L. C., Markova A. K., 2007. Similarity and regional differences in Quaternary arvicolid evolution in Central and Eastern Europe // Quaternary International. V. 160. P. 81–99.
  42. Ponomarev D., Puzachenko A., Isaychev K., 2015. Morphotypic variability of masticatory surface pattern of molars in the recent and Pleistocene Lemmus and Myopus (Rodentia, Cricetidae) of Europe and Western Siberia // Acta Zoologica. V. 96. P. 14–29.
  43. Roberts M. B., Parfitt S. A., 1999. Boxgrove. A Middle Pleistocene hominid site at Eartham Quarry, Boxgrove, West Sussex. London: English Heritage. 456 p.
  44. Rodgers A. R., Lewis M. C., 1986. Diet selection in Arctic lemmings (Lemmus sibiricus and Dicrostonyx groenlandicus): demography, home range, and habitat use // Canadian Journal of Zoology. V. 64. P. 2717–2727.
  45. Soinen E. M., Zinger L., Gielly L., Ims R. A., 2013. Shedding new light on the diet of Norwegian lemmings: DNA metabarcoding of stomach content // Polar Biology. V. 36. № 7. P. 1069–1076.
  46. Takken Beijersbergen L. M., 2006. The Middle Pleistocene Lemmus (Arvicolidae, Rodentia, Mammalia) in NorthWestern Europe // Courier Forschungsinstiut Senckenberg. V. 256. P. 173–192.
  47. Tesakov A., Bondarev A., 2021. Down to the roots of lemmings: a new species of basal lemming from the upper Pliocene of West Siberia // Journal of Vertebrate Paleontology. V. 41. № 5. e2036173. P. 1–16.
  48. Tiunov M. P., Panasenko V. E., 2010. The distribution history of the Amur brown lemming (Lemmus amurensis) in the Late Pleistocene – Holocene in the southern Far East of Russia // Russian Journal of Theriology. V. 9. № 1. P. 33–37.
  49. Van der Meulen A. J., 1973. Middle Pleistocene smaller mammals from the Monte Pegalia (Orvieto, Italy) with special reference to the phylogeny of Microtus (Arvicolidae, Rodentia) // Quaternaria. V. 17. P. 1–144.
  50. Wilson D. E., Reeder D. M., 2005. Mammal species of the world: a taxonomic and geographic reference. 3rd edition. Baltimore: The John Hopkins University Press. V. 2. 142 p. [http://www.departments.bucknell.edu/biology/resources/msw3/browse.asp?s=y&id=13000176].

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Scheme of evaluation of characters differentiating L. kowalskii from modern Palaearctic Lemmus and Myopus by the structure of M3. 1 – Orientation variants of M3 lophs: 1a – upper (mesial) lophs are oriented at an angle to the lower (distal) ones; 1b – lophs are conditionally parallel, i.e. four parallel lines can be drawn through them, and there are no structures that violate the lophodont plan; 1c – lophs are conditionally parallel and an unpaired distal prism is present. Straight arrows – lophs, crossed arrows – unpaired distal prism (= heel of M3), round frame – place of junction of AL and T2 (T2 has the shape of a triangle) in L. kowalskii with plesiomorphic orientation variant of lophs 1a. 2 – Asymmetry of reentrant angles of M3, estimated by the values of the IAs index. The arrows show the scheme of measuring the reentrant angles – lingual LRA2 and buccal BRA2. Variants of manifestation of features: 1a, 2a – plesiomorphic; 1b, 1c, 2b – apomorphic.

Baixar (271KB)
3. Fig. 2. Mean and median values of the indices of the width of the chewing surface, IW (W/L*100), and the asymmetry of the reentrant angles, IAs (LRA2/BRA2*100) of the third upper tooth in modern and fossil Lemmini of the Palaearctic (1 – Tobienia kretzoi, N = 3 (Fejfar, Repenning, 1998); 2 – Plioctomys mimomiformis, N = 3 (Rebielice Królewskie, Kowalski, 1977); 3 – Lemmus kowalskii, N = 9 (Shernfeld (Carls, Rabeder, 1988) and Zamkowa Dolna (Kowalski, 1977)); 4 – Lemmus sheri, Krestovka, N = 21 (Abramson, 1992); 5 – Skorodum and Romanovo, N = 28; 6 – Lemmus sibiricus, N = 32 (Western Siberia, modern); 7 – Myopus schisticolor, N = 30 (Northern Cis-Urals, modern)).

Baixar (200KB)
4. Fig. 3. Comparison of samples from the Skorodum and Romanovo localities (data combined) with the type series of Sher's lemming and modern Lemmus sibiricus (Western Siberia) and Myopus schisticolor (Northern Cis-Urals) by the values of the index of relative width of the chewing surface M3, IW.

Baixar (176KB)
5. Fig. 4. Examples of M3 of modern and fossil Lemmini with different values of the index of the relative width of the chewing surface, IW (W/L*100): black asterisks indicate index values in the range of 46–50 (typical for Lemmus), red asterisks indicate 58–60 (typical for Myopus), not marked with an asterisk indicates a range of intermediate index values (56–58). Modern: 1 – Myopus schisticolor, Northern Cis-Urals, id 1929`17; 2 – M. schisticolor, Northern Cis-Urals, id 1746`17; 6 – Lemmus sibiricus, Tyumen Region, IERiZh 19981; 7 – Lemmus sibiricus, Tyumen region, IERiZh 24522. Fossils: 3, 4, 8 – Romanovo 1s; 9 – Skorodum a; 5, 10 – L. sheri, type series, Krestovka, KLO-6. Scale bar – 1 mm.

Baixar (544KB)
6. Fig. 5. Values of the discriminant function Y6 calculated from seven measurements of m3 from collection materials from the Skorodum locality (N = 13) and the type series of L. sheri (N = 11) in comparison with modern Lemmus and Myopus (frequencies for modern taxa according to: Chaline et al., 1988).

Baixar (183KB)
7. Fig. 6. Examples of m3 from the Skorodum locality, for which the calculated values of the discriminant function Y6 are minimal (1) and maximal (2) for the studied sample (for comparison, m3 of L. sheri, corresponding to the proportions of Myopus (3) and Lemmus (4). 1 – id 1, Skorodum a`, Y6 = –12.6; 2 – Skorodum a, id 12, Y6=5.5; 3 – id 700, Krestovka, KLO-6, holotype of L. sheri; 4 – Krestovka, KLO-10, outcrop 6. Scale 1 mm.

Baixar (480KB)
8. Fig. 7. Comparison of Pliocene, Pleistocene and modern Lemmini by complexity ranks of the third upper and third lower molars: 1 – modal class of distribution of complexity ranks of the basal genus Tobienia, Pliocene (based on a single find: Tesakov, Bondarev, 2021); 2 – Plioctomys, Pliocene (Sukhov, 1977; Kowalski, 1977); 3 – Lemmus kowalskii, Paleopleistocene = Gelasian (Kowalski, 1977; Carls, Rabeder, 1988)); 4 – Lemmus sheri, Eopleistocene = Calabrian (Abramson, 1992); 5a – Romanovo 1, Eopleistocene; 5b – Skorodum, Eopleistocene; 6 – modern Lemmus sibiricus (Markova et al., 2018): a – r. Kharasavey, Yamal Peninsula, b – Vorkuta, Polar Cis-Urals, c – r. Seyakha, Yamal Peninsula); 7 – modern Myopus schisticolor (Markova et al., 2018): a – Northern Cis-Urals, b – Sorumsky Reserve, Western Siberia, c – Sibirskie Uvaly, Western Siberia).

Baixar (185KB)
9. Fig. 8. Lower jaws of lemmings from the Skorodum locality a: 1–3 – adult individual, view of the jaw from above (1), from the lingual side (2), and from the buccal side (3); 4–5 – young individual, view of the jaw from above (4) and from the lingual side (5). Scale bar 5 mm.

Baixar (408KB)
10. Fig. 9. Visualization of the similarity of morphological features of the combined sample of Eopleistocene lemmings from the Skorodum and Romanovo localities (red rectangle) with modern genera of Palaearctic Lemmini (Lemmus, Myopus) and fossil Quaternary lemmings of Eurasia – L. sheri and L. kowalskii. Arrows are comparison options, numbers are numbers of features by which the considered forms are similar in pairwise comparisons: they have common variations (features 1, 5c, 7), do not differ from each other by the established boundary values (features 2, 6, 7) or do not demonstrate statistically significant differences (features 3–4, 5a, 5b). Drawings of tooth contours after: Smirnov et al., 1986; Carls, Rabeder, 1988; Abramson, 1992; Markova et al., 2018, preserving the style of the original source. Features: 1b – regular lophodont M3 with parallel lophs without additional prisms, 1c – lophodont M3 with subparallel lophs and a massive heel; 2 – minimum values of the IAS index (LRA2/BRA2*100) less than 80; 3 – values of the IW index (W/L*100) do not differ statistically; 4 – values of the discriminant function calculated by 7 measurements of m3 do not differ statistically; 5a, 5b – frequencies of complexity ranks of m3 (5a) and M3 (5b) do not differ statistically, 5c – simplified m1 are present (m1_rank-1); 6 – sizes of m1 in adults are on average more than 3 mm; 7 – the alveolar apex of the lower incisor is located at the level of the second loop of m3 in at least some adults.

Baixar (362KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025