Correlation between hormone levels and count of microorganisms in the vagina of women participated in a 5-day dry immersion experiment

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The aim of this article is to study the relationship between hormone levels and the number of vaginal microorganisms of female volunteers participated in a 5-day dry immersion (DI) experiment. The study involved 6 volunteers aged 25 to 40 years. The duration of the DI was 5 days. Throughout the experiment, the volunteers used 1 vaginal capsule containing autologous Lactobacillus spp in a titer of 107 CFU/ml (excipients — magnesium stearate — 3 mg, lactose monohydrate — sufficient to obtain a capsule content weight of 400 mg) every night for 5 days. The volunteers also orally took a lactoferrin-based preparation in the amount of 400 mg once a day in the morning, starting from the 1st day of DI for 30 long. To study the state of the vaginal and cervical canal microflora, samples were taken before the experiment, 5—7 days and 34—36 days after the end of immersion. Blood was taken to measure the amount of estradiol and prolactin at the same points as the vaginal biomaterial. All three points fell on days 19—22 of the menstrual cycle. Vaginal contents and cervical canal discharge were cultivated on selective and non-selective agar. Species identification of microorganisms was performed by MALDI-TOF-MS analysis using a Microflex LT time-of-flight mass spectrometer with Maldi BioTyper software (Bruker Daltoniks, Germany) version 4.0. Concentrations of estradiol and prolactin were measured by the enzyme immunoassay method using commercial kits (DBC, Canada) on a Stat Fax 2100 plate immunoassay analyzer (Awareness Technology, USA). As a result, correlation was found between the levels of prolactin and estradiol and some microorganisms of the vaginal and cervical canal microbiota. Lactobacillus spp found to be the most sensitive to the levels of estradiol and prolactin. In addition to Lactobacillus spp, the amount of estradiol and prolactin is also affected by Staphylococcus spp, Corymebacterium spp, B. bifidum and C. acnes. Thus, under conditions simulating individual factors of space flight, it is necessary to pay close attention to monitoring the hormonal status of female volunteers, as well as maintaining the amount of Lactobacillus spp within the normal range to prevent the development of dysbiotic conditions of the vagina and cervical canal.

Full Text

Restricted Access

About the authors

D. V. Komissarova

Institute of Biomedical Problems, RAS

Author for correspondence.
Email: d.komisarova@yandex.ru
Russian Federation, Moscow

V. K. Ilyin

Institute of Biomedical Problems, RAS

Email: d.komisarova@yandex.ru
Russian Federation, Moscow

A. A. Markin

Institute of Biomedical Problems, RAS

Email: d.komisarova@yandex.ru
Russian Federation, Moscow

O. A. Zhuravleva

Institute of Biomedical Problems, RAS

Email: d.komisarova@yandex.ru
Russian Federation, Moscow

A. L. Vorontsov

Institute of Biomedical Problems, RAS

Email: d.komisarova@yandex.ru
Russian Federation, Moscow

References

  1. Farage M.A., Miller K.W., Sobel J.D. Dynamics of the vaginal ecosystem—hormonal influences // Infect. Dis. Res. Treat. 2010. V. 3. doi: 10.4137/IDRT.S3903
  2. Gimunová M., Paludo A.C., Bernaciková M., Bienertova-Vaska J. The effect of space travel on human reproductive health: A systematic review // NPJ Microgravity. 2024. V. 10. № 1. P. 10.
  3. Mathyk B., Imudia A.N., Quaas A.M. et al. Understanding how space travel affects the female reproductive system to the Moon and beyond // NPJ Womens Health. 2024. V. 2. P. 20. doi: 10.1038/s44294-024-00009-z
  4. Kaur H., Merchant M., Haque M.M., Mande S.S. Crosstalk between female gonadal hormones and vaginal microbiota across various phases of women’s gynecological lifecycle // Front. Microbiol. 2020. V. 11. P. 551.
  5. Ilyin V.K., Komissarova D.V., Afonin B.V. et al. Effect of probiotic consumption with a fermented drink on intestinal microbiota, mucosae, and gastrointestinal functions in humans // Human Physiology. 2023. V. 49. № 7. P. 845.
  6. Rozanov I.A., Kuznetsova P.G., Savinkina A.O. et al. [Psychological support using virtual reality in a study with three-day dry immersion] // Aviakosm. Ekolog. Med. 2022. V. 56. № 1. P. 55.
  7. Tomilovskaya E.S., Rukavishnikov I.V., Amirova L.E. et al. 21-day Dry Immersion: Schedule of investigations and major results // Human Physiology. 2021. V. 47. № 7. P. 735.
  8. Ankirskaya A.S., Muravyova V.V. [Integral assessment of the vaginal microbiota state. Diagnosis of opportunistic vaginitis] // Obstet. Gynecol.: news, opinions, training. 2020. V. 8. № 1. P. 69.
  9. Dzeranova L.K., Vorotnikova S.Y., Shutova A.S. et al. [Drug-induced hyperprolactinemia: mechanism of development, features of diagnosis and treatment] // Obes. Metab. 2023. V. 20. № 3. P. 251.
  10. Rezaei Z., Adabi K., Feizabad E., Aliakbar M. The effect of probiotic supplementation in intrauterine sperm insemination pregnancy rate // Fertil. Gynecol. Androl. 2023. V. 3. № 1. P. e136798.
  11. Kwaszewska A., Sobiś-Glinkowska M., Szewczyk E.M. Cohabitation – relationships of corynebacteria and staphylococci on human skin // Folia Microbiol. 2014. V. 59. № 6. P. 495.
  12. Yuan Q., Huang R., Tang L. et al. Screening Biomarkers and Constructing a Predictive Model for Symptomatic Urinary Tract Infection and Asymptomatic Bacteriuria in Patients Undergoing Cutaneous Ureterostomy: A Metagenomic Next-Generation Sequencing Study // Dis. Markers. 2022. V. 2022. P. 7056517.
  13. Gladysheva I.V., Cherkasov S.V., Khlopko Y.A., Plotnikov A.O. Genome characterization and probiotic potential of Corynebacterium amycolatum human vaginal isolates // Microorganisms. 2022. V. 10. № 2. P. 249.
  14. Chen X., Zhao X., Chen L. et al. Vaginitis caused by Corynebacterium amycolatum in a prepubescent girl // J. Pediatr. Adolesc. Gynecol. 2015. V. 28. № 6. P. e165.
  15. Dobrokhotova Yu.E., Zatikyan N.G. [Hormonal status and microbiocenosis of the vagina] // Obstetrics. Gynecology. Reproduction. 2008. № 3. P. 7.
  16. Saidi N., Saderi H., Owlia P., Soleimani M. Anti-biofilm potential of Lactobacillus casei and Lactobacillus rhamnosus cell-free supernatant extracts against Staphylococcus aureus // Adv. Biomed. Res. 2023. V. 12. P. 50.
  17. Davoodabadi A., Soltan Dallal M.M., Lashani E., Tajabadi Ebrahimi M. Antimicrobial activity of Lactobacillus spp. isolated from fecal flora of healthy breast-fed infants against diarrheagenic Escherichia coli // Jundishapur J. Microbiol. 2015. V. 8. № 12. P. e27852.
  18. Banwo K., Alonge Z., Sanni A.I. Binding capacities and antioxidant activities of Lactobacillus plantarum and Pichia kudriavzevii against cadmium and lead toxicities // Biol. Trace Elem. Res. 2021. V. 199. № 2. P. 779.
  19. Asan-Ozusaglam M., Gunyakti A. A new probiotic candidate bacterium from human milk: Limosilactobacillus vaginalis MA-10 // Acta Alimentaria. 2021. V. 50. № 1. P. 13.
  20. Sung C., Kim B.G., Kim S. et al. Probiotic potential of Staphylococcus hominis MBBL 2–9 as anti-Staphylococcus aureus agent isolated from the vaginal microbiota of a healthy woman // J. Appl. Microbiol. 2010. V. 108. № 3. P. 908.
  21. Gutiérrez-Barroso A., Anaya-López J.L., Lara-Zárate L. et al. Prolactin stimulates the internalization of Staphylococcus aureus and modulates the expression of inflammatory response genes in bovine mammary epithelial cells // Vet. Immunol. Immunopathol. 2008. V. 121. № 1—2. P. 113.
  22. France M., Alizadeh M., Brown S. et al. Towards a deeper understanding of the vaginal microbiota // Nat. Microbiol. 2022. V. 7. № 3. P. 367.
  23. Mirmonsef P., Hotton A.L., Gilbert D. et al. Free glycogen in vaginal fluids is associated with Lactobacillus colonization and low vaginal pH // PloS One. 2014. V. 9. № 7. P. e102467.
  24. Clabaut M., Suet A., Racine P.J. et al. Effect of 17β-estradiol on a human vaginal Lactobacillus crispatus strain // Sci. Rep. 2021. V. 11. № 1. P. 7133.
  25. Wagner R.D., Johnson S.J. Probiotic lactobacillus and estrogen effects on vaginal epithelial gene expression responses to Candida albicans // J. Biomed. Sci. 2012. V. 19. № 1. P. 58.
  26. D'Alessandro M., Parolin C., Bukvicki D. et al. Probiotic and metabolic characterization of vaginal lactobacilli for a potential use in functional foods // Microorganisms. 2021. V. 9. № 4. P. 833.
  27. Gladysheva I.V., Cherkasov S.V. Antibiofilm activity of cell-free supernatants of vaginal isolates of Corynebacterium amycolatum against Pseudomonas aeruginosa and Klebsiella pneumoniae // Arch. Microbiol. 2023. V. 205. № 4. P. 158.
  28. Király L., Alén M., Korvola J., Horsmanheimo M. The effect of testosterone and anabolic steroids on the skin surface lipids and the population of Propionibacteria acnes in young postpubertal men // Acta Derm. Venereol. 1988. V. 68. № 1. P. 21.
  29. Wang X., Zhou Y.C., Huang Y.C. et al. Estradiol stimulates the growth and biofilm formation of clinical Staphylococcus epidermidis // Zhonghua Yi Xue Za Zhi. 2016. V. 96. № 38. P. 3083.
  30. Catron T.R., Swank A., Wehmas L.C. et al. Microbiota alter metabolism and mediate neurodevelopmental toxicity of 17β-estradiol // Sci. Rep. 2019. V. 9. № 1. P. 7064.
  31. Lee S., Jung D.H., Park M. et al. The Effect of Lactobacillus gasseri BNR17 on postmenopausal symptoms in ovariectomized rats // J. Microbiol. Biotechnol. 2021. V. 31. № 9. P. 1281.
  32. Otero M.C., Nader-Macias M.E. Inhibition of Staphylococcus aureus by H2O2-producing Lactobacillus gasseri isolated from the vaginal tract of cattle // Anim. Reprod. Sci. 2006. V. 96. № 1–2. P. 35.
  33. Li X., Liu X., Yu S. Psychological stress-derived prolactin modulates occludin expression in vaginal epithelial cells to compromise barrier function // Cell. Physiol. Biochem. 2015. V. 37. № 1. P. 153.
  34. Kaminsky L., Al-Sadi R., Ma T. Lactobacillus acidophilus causes enhancement of the intestinal tight junction barrier by a toll-like receptor-2-dependent increase in occluding // J. Allergy Clin. Immunol. 2022. V. 149. № 2. Suppl. P. AB99.
  35. Cui Ya., Liu L., Dou X. et al. Lactobacillus reuteri ZJ617 maintains intestinal integrity via regulating tight junction, autophagy and apoptosis in mice challenged with lipopolysaccharide // Oncotarget. 2017. V. 8. P. 77489.
  36. Zhang J., Sun Z., Jiang S. et al. Probiotic Bifido-bacterium lactis V9 regulates the secretion of sex hormones in polycystic ovary syndrome patients through the gut-brain axis // mSystems. 2019. V. 4. № 2. P. e00017-19.
  37. Yousuf M., Ali A., Khan P. et al. Insights into the antibacterial activity of prolactin-inducible protein against the standard and environmental MDR bacterial strains // Microorganisms. 2022. V. 10. № 3. P. 597.
  38. Wostmann B.S. Morphology and physiology, endocrinology and biochemistry / Germfree and gnotobiotic animal models. London. CRC, 1996. P. 208.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Contribution of the number of different microorganisms in the vaginal biotope to the amount of estradiol.

Download (97KB)
3. Fig. 2. Contribution of the number of different types of cervical canal microorganisms to the amount of prolactin.

Download (64KB)
4. Fig. 3. Contribution of different vaginal biotope bacteria to the amount of estradiol at the sampling point “After” according to regression analysis data.

Download (72KB)
5. Fig. 4. Contribution of different bacteria of the vaginal biotope to the amount of estradiol at the sampling point “After+34” according to regression analysis data.

Download (79KB)
6. Fig. 5. Contribution of different bacteria of the vaginal biotope to the amount of prolactin at the sampling point “After+34” according to regression analysis data.

Download (63KB)

Copyright (c) 2025 Russian Academy of Sciences