Solid-Phase PCR on Film Biochips with Brush Polymer Cells, "Lab-on-a-Chip"

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

A method of nucleic acid analysis by solid-phase PCR with immobilised primers extension (primer extension) in a closed film biochip during thermocycling, with control of Cy5-fluorescence-labelled nucleotide incorporation by digital fluorescence microscopy, by endpoint, was developed. A "film biochip", made of film polyethylene terephthalate, with an internal chamber, with brush polymer cells with immobilised primers, with channels for supply and removal of solutions into the biochip chamber, has been developed, with low heat capacity and high thermal conductivity of thin film components of the biochip, with thermocycling, with registration of results by digital fluorescence microscopy through the lid and the layer of washing liquid without disassembling the biochip, in a system isolated from the environment, "laboratory on a chip". The performance of the method and functional suitability of the "film biochip" was demonstrated by analysing samples containing DNA from pathogenic bacteria Staphylococcus auereus and Legionella pneumophila.

About the authors

I. Yu Shishkin

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Russia, Moscow

K. A Simikov

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Russia, Moscow

G. F Shrylev

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Russia, Moscow

R. A Miftakhov

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Russia, Moscow

O. A Zasedateleva

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Russia, Moscow

V. E Kuznetsova

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Russia, Moscow

V. E Shershov

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Russia, Moscow

S. A Surzhikov

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Russia, Moscow

V. A Vasiliskov

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Russia, Moscow

S. A Lapa

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Russia, Moscow

A. V Chudinov

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Email: chudhome@rambler.ru
Russia, Moscow

References

  1. Jiang K.R., Huang J.L., Chen C.C., Su H.G., Wu J.C. // J. Taiwan Inst. Chem. Eng. 2011. V. 42. P. 5–12. https://doi.org/10.1016/j.jtice.2010.04.012
  2. Yeh C.H., Chang Y.H., Lin H.P., Chang T.C., Lin Y.C. // Sensors and Actuators B: Chemical. 2012. V. 161. P. 1168–1175. https://doi.org/10.1016/j.snb.2011.10.016
  3. Bourque S.N., Valero J.R., Mercier J., Lavoie M.C., Levesque R.C. // Appl. Environ. Microbiol. 1993. V. 59. P. 523–527. https://doi.org/10.1128/aem.59.2.523-527.1993
  4. Strichkov B.N., Drohyshev A.L., Mikhailovich V.M., Mirzabekov A.D. // Biotechniques. 2000. V. 29. P. 844–857. https://doi.org/10.2144/00294rr01
  5. Tillib S.V., Strichkov B.N., Mirzabekov A.D. // Anal. Biochem. 2001. V. 292. P. 155–160. https://doi.org/10.1006/abio.2001.5082
  6. Mikhailovich V., Lapa S., Gryadunov D., Sobolev A., Strichkov B., Chernyh N., Skotnikova O., Irruganova O., Moroz A., Litvinov V., Vladimirskii M., Perelman M., Chernousova L., Erokhin V., Zasedatelev A., Mirzabekov A. // J. Clin. Microbiol. 2001. V. 39. P. 2531–2540. https://doi.org/10.1128/jcm.39.7.2531-2540.2001
  7. Khodakov D.A., Zakharova N.V., Gryadunov D.A., Filatov F.P., Zasedatelev A.S., Mikhailovich V.M. // Biotechniques. 2008. V. 44. P. 241–248. https://doi.org/10.2144/000112628
  8. Damin F., Galbiati S., Ferrari M., Chiari M. // Biosens. Bioelectron. 2016. V. 78. P. 367–373. https://doi.org/10.1016/j.bios.2015.11.091
  9. Pirrung M.C., Worden J.C., Labriola J.P., Montague-Smith M.P. // Bioorg. Med. Chem. 2001. V. 11. P. 2437–2440. https://doi.org/10.1016/S0960-894X(01)00465-6
  10. Adessi C., Matton G., Ayala G., Turcatti G., Mermod J., Mayer P., Kawashima E. // Nucleic Acids Res. 2000. V. 28. P. e87. https://doi.org/10.1093/nar/28.20.e87
  11. Cheng L., Sun B., Sun Y., Xiao P., Ge Q., Zheng Y., Ke X., Zhou Y., Zhang M., Chen P., Lu Z. // J. Nanosci. Nanotechnol. 2010. V. 10. P. 479–486. https://doi.org/10.1166/jnm.2010.1727
  12. Kranaster R., Ketzer P., Marx A. // Chembiochem. 2008. V. 9. P. 694–697. https://doi.org/10.1002/cbic.200700609
  13. Shapero M.H., Leuther K.K., Nguyen A., Scott M., Jones K.W. // Genome Res. 2001. V. 11. P. 1926–1934. https://doi.org/10.1101/gr205001
  14. Lapa S.A., Miftakhov R.A., Klochikhina E.S., Ammur Yu.I., Blagodatskikh S.A., Shershov V.E., Zasedatelev A.S., Chudinov A.V. // Mol. Biol. 2021. V. 55. P. 828–838. https://doi.org/10.1134/S0026893321040063
  15. Zhu C., Cui J., Hu A., Yang K., Zhao J., Liu Y., Deng G., Zhu L. // Chin. J. Anal. Chem. 2019. V. 47. P. 1751–1758. https://doi.org/10.1016/S1872-2040(19)61199-0
  16. van Pelt-Verkul E., Van Belkum A., Hays J.P. // Principles and technical aspects of PCR amplification. Springer Science & Business Media, 2008. https://link.springer.com/book/10.1007/978-1-4020-6241-4
  17. Aparna G.M., Tetala K.K. // Biomolecules. 2023. V. 13. P. 602. https://doi.org/10.3390/biom13040602
  18. Brittain W.J., Brandsetter T., Prucker O., Rühe J. // ACS Appl. Mater. Interfaces. 2019. V. 11. P. 39397–39409. https://doi.org/10.1021/acsami.9b06838
  19. Miftakhov R.A., Ikonnikova A.Y., Vasiliskov V.A., Lapa S.A., Levashova A.I., Kuznetsova V.E., Shershov V.E., Zasedatelev A.S., Nasedkina T.V., Chudinov A.V. // Russ. J. Bioorg. Chem. 2023. V. 49. P. 1143–1150. https://doi.org/10.1134/S1068162023050217
  20. Shishkin I.Yu., Shrylev G.F., Barsky V.E., Lapa S.A., Zasedateleva O.A., Kuznetsova V.E., Shershov V.E., Vasiliskov V.A., Polyakov S.A., Zasedatelev A.S., Chudinov A.V. // Mol. Biol. 2024. V. 58. P. 534–546. https://doi.org/10.1134/S002689332470016X
  21. Hsu Y.M., Chang C.C. // Optik. 2015. V. 126. P. 2600–2605. https://doi.org/10.1016/j.ijleo.2015.06.029
  22. Hung T.Q., Chin W.H., Sun Y., Wolff A., Bang D.D. // Biosens. Bioelectron. 2017. V. 90. P. 217–223. https://doi.org/10.1016/j.bios.2016.11.028
  23. Sengupta J. // Green Anal. Chem. 2024. V. 10. P. 100119. https://doi.org/10.1016/j.greeac.2024.100119
  24. Ren K., Zhou J., Wu H. // Accounts Chem. Res. 2013. V. 46. P. 2396–2406. https://doi.org/10.1021/ar300314s
  25. Jeyachandran Y.L., Mielczarski J.A., Mielczarski E., Rai B. // J. Colloid Interface Sci. 2010. V. 341. P. 136–142. https://doi.org/10.1016/j.jcis.2009.09.007
  26. Louzi V.C., Campos J.S. // Surfaces Interfaces. 2019. V. 14. P. 98–107. https://doi.org/10.1016/j.surfin.2018.12.005
  27. Owens D.K. // J. Appl. Polym. Sci. 1975. V. 19. P. 3315–3326. https://doi.org/10.1002/app.1975.070191216

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences