A Phenol-Free Method for the Robust Isolation of the Double-Stranded RNA Produced in the E. coli HT115 Strain

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

Obtaining a fraction of double-stranded RNA is an integral part of any RNA interference research whether it aimed at solving fundamental or applied problems. The production of dsRNA in bacterial culture is a common technique due to its comparative cheapness and scaling-up opportunities. In this article, we propose a new method for fast and effective isolation of dsRNA from bacterial culture, as an alternative to classical phenol-chloroform extraction. In our method, phenol is replaced with less toxic methanol, and the total RNA thus isolated from bacteria contains up to 25% of the target molecule lacking the DNA contamination, which enables its usage in certain further applications without additional cleanup steps. The application of this methodology will be justified in laboratories engaged in either fundamental or applied research on RNA interference. However, scaling the technology for agricultural use may require adjustments to the protocol described in this work.

Sobre autores

A. Ivanov

Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences; Novosibirsk State University

Email: a.ivanov2@g.nsu.ru
Russia, Novosibirsk; Russia, Novosibirsk

T. Golubeva

Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences; Immanuel Kant Baltic Federal University

Russia, Novosibirsk, Russia, Kaliningrad

Bibliografia

  1. Castel S.E., Martienssen R.A. // Nat. Rev. Genet. 2013. V. 14. P. 100–112. https://doi.org/10.1038/nrg3355
  2. Svoboda P. // Front. Plant Sci. 2020. V. 11. P. 1237. https://doi.org/10.3389/fpls.2020.01237
  3. Li H., Guan R., Guo H., Miao X. // Plant Cell Environ. 2015. V. 38. P. 2277–2285. https://doi.org/10.1111/pce.12546
  4. Islam M.T., Davis Z., Chen L., Englander J., Zomorodi S., Frank J., Bartlett K., Somers E., Carballo S.M., Kester M., Shaked A., Pourtaheri P., Sherif M.S. // Microb. Biotechnol. 2021. V. 14. P. 1847–1856. https://doi.org/10.1111/1751-7915.13699
  5. Kalyandurg P.B., Sundararajan P., Dubey M., Ghadamgah F., Zahid M.A., Whisson S.C., Vetukuri R.R. // Phytopathology. 2021. V. 111. P. 2166–2175. https://doi.org/10.1094/phyto-02-21-0054-sc
  6. Mitter N., Worrall E.A., Robinson K.E., Li P., Jain R.G., Taochy C., Fletcher S.J., Carroll B.J., Lu G.Q. (Max), Xu Z.P. // Nat. Plants. 2017. V. 3. P. 1–10. https://doi.org/10.1038/nplants.2016.207
  7. Islam M.T., Sherif S.M. // Int. J. Mol. Sci. 2020. V. 21. P. 2072. https://doi.org/10.3390/ijms21062072
  8. Konakalla N.C., Bag S., Deraniyagala A.S., Culbreath A.K., Pappu H.R. // Viruses. 2021. V. 13. P. 662. https://doi.org/10.3390/v13040662
  9. Sundaresha S., Sharma S., Bairwa A., Tomar M., Kumar R., Bhardwaj V., Jeevalatha A., Bakade R., Salaria N., Thakur K., Singh B.P., Chakrabarti S.K. // Pest. Manag. Sci. 2022. V. 78. P. 3183–3192. https://doi.org/10.1002/ps.6949
  10. Gan D., Zhang J., Jiang H., Jiang T., Zhu S., Cheng B. // Plant Cell Rep. 2010. V. 29. P. 1261–1268. https://doi.org/10.1007/s00299-010-0911-z
  11. Tenllado F., Martinez-Garcia B., Vargas M., Diaz-Ruiz J.R. // BMC Biotechnol. 2003. V. 3. P. 3. https://doi.org/10.1186/1472-6750-3-3
  12. Ivanov A.A., Golubeva T.S. // J. Fungi. 2023. V. 9. P. 1100. https://doi.org/10.3390/jof9111100
  13. Verdonck T.W., Yanden Broeck J. // Front. Physiol. 2022. V. 13. P. 836106. https://doi.org/10.3389/fphys.2022.836106
  14. Ann S.-J., Donahue K., Koh Y., Martin R.R., Choi M.-Y. // Int. J. Insect Sci. 2019. V. 11. P. 4032. https://doi.org/10.1177/1179543319840323
  15. Wang Z., Li Y., Zhang B., Gao X., Shi M., Zhang S., Zhong S., Zheng Y., Liu X. // Adv. Funct. Mater. 2023. V. 33. P. 3143. https://doi.org/10.1002/adfm.202213143
  16. Guan R., Chu D., Han X., Miao X., Li H. // Front. Bioeng. Biotechnol. 2021. V. 9. P. 3790. https://doi.org/10.3389/fbioe.2021.753790
  17. Strezsak S., Beuning P., Skizim N. // Anal. Methods. 2021. V. 13. P. 179–185. https://doi.org/10.1039/DDAY01498B
  18. Aranda P.S., Lajoie D.M., Joreyk C.L. // Electrophoresis. 2012. V. 33. P. 366–369. https://doi.org/10.1002/elps.20110335
  19. Livshits M.A., Amosova O.A., Lyubchenko Y.L. // J. Biomol. Struct. Dyn. 1990. V. 7. P. 1237–1249. https://doi.org/10.1080/073911102.1990.10508562
  20. Wickham H., Averick M., Bryan J., Chang W., McGowan L.D.A., François R., Grolemund G., Hayes A., Henry L., Hester J., Kuhn M., Pedersen L.T., Miller E., Bache M.S., Muller K., Ooms J., Robinson D., Seidel P.D., Spinu V., Takahashi K., Yanghan D., Wilke C., Woo K., Yutani H. // J. Open Source Softw. 2019. V. 4. P. 1686. https://doi.org/10.21105/joss.01686

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025