Gold(I) Chloride Complexes with 4-Halo-substituted Phenyl Isocyanide Ligands

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

A series of gold(I) monoisocyanide [AuCl(C6H4–4-X)] (X = Cl (IIa), Br (IIb), I (IIc) and bis-isocyanide [Au(C6H4–4-X)2](PF6) (X = Cl (IIIa), Br (IIIb), I (IIIc) complexes were prepared by the reaction of [AuCl(Tht)] (Tht = tetrahydrothiophene) with the specified isocyanide. The molecular structure of IIaIIc was established by X-ray diffraction (CCDC no. 2253450 (IIa), 2253447 (IIb), 2253448 (IIc)). The crystals of IIb and IIc are isostructural; they were found to have several types of intermolecular interactions, particularly, C–X⋯Cl – Au halogen bonds, π-hole (CCNR) ⋯ (Au) interactions, and Au⋯Au aurophilic contacts, which form together a two-layer 2D supramolecular polymer. The crystals of IIb, IIc and IIIa, IIIb exhibit phosphorescence at room temperature; compounds IIa and IIIc do not possess luminescent properties; and mechanical grinding of IIaIIc and IIIaIIIc powders does not change the photophysical properties.

Full Text

Restricted Access

About the authors

G. A. Gavrilov

St. Petersburg State University

Email: m.kinzhalov@spbu.ru
Russian Federation, St. Petersburg

K. N. Davletbaeva

St. Petersburg State University

Email: m.kinzhalov@spbu.ru
Russian Federation, St. Petersburg

M. A. Kinzhalov

St. Petersburg State University

Author for correspondence.
Email: m.kinzhalov@spbu.ru
Russian Federation, St. Petersburg

References

  1. Yam V.W.W., Law A.S.Y. // Coord. Chem. Rev. 2020. V. 414. P. 213298.
  2. Seifert T.P., Naina V. R., Feuerstein T. J. et al. // Nanoscale. 2020. V. 12. № 39. P. 20065.
  3. Kinzhalov M.A., Grachova E. V., Luzyanin K. V. // Inorg. Chem. Front. 2022. V. 9. P. 417.
  4. Pazderski L., Abramov P. A. // Inorganics. 2023. V. 11. № 3. P. 100.
  5. Wing-Wah Y.V., Chung-Chin C. E. Photochemistry and Photophysics of Coordination Compounds: Gold. Photochemistry and Photophysics of Coordination Compounds II. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. P. 269.
  6. Yam V.W.-W., Au V. K.-M., Leung S. Y.-L. // Chem. Rev. 2015. V. 115. № 15. P. 7589.
  7. Tang M.-C., Chan M.-Y., Yam V. W.-W. // Chem. Rev. 2021. V. 121. № 13. P. 7249.
  8. Tang M.-C., Chan A. K.-W., Chan M.-Y. et al. // Top. Curr. Chem. 2016. V. 374. № 4. Р. 46.
  9. Shmelev N.Y., Okubazghi T. H., Abramov P. A. et al. // Dalton Trans. 2021. V. 50. № 36. Р. 12448.
  10. Lin Y., Jiang C., Hu F. et al. // Dyes Pigm. 2013. V. 99. № 3. Р. 995.
  11. Lu T., Zhang F., Wang X.-Y. et al. // Dyes Pigm. 2021. V. 186. Р. 108964.
  12. Au V.K.-M., Wu D., Yam V. W.-W. // J. Am. Chem. Soc. 2015. V. 137. № 14. P. 4654.
  13. Okubazghi T.H., Abramov P. A. et al. // Cryst. Growth Des. 2022. V. 22. № 6. Р. 3882.
  14. Chan M.H.-Y., Yam V. W.-W. // J. Am. Chem. Soc. 2022. V. 144. № 50. P. 22805.
  15. Girish Y.R., Prashantha K., Byrappa K. // Emerg. Mater. 2021. V. 4. № 3. P. 673.
  16. Pyykkö P. // Chem. Rev. 1997. V. 97. № 3. P. 597.
  17. Dyadchenko V.P., Belov N. M., Dyadchenko M. A. et al. // Russ. Chem. Bull. 2010. V. 59. № 3. Р. 539.
  18. Fujisawa K., Kawakami N., Onishi Y. et al. // J. Mater. Chem. C. 2013. V. 1. № 34. P. 5359.
  19. Mathieson T., Schier A., Schmidbaur H. // Dalton Trans. 2001. № 8. P. 1196.
  20. Seki T., Sakurada K., Muromoto M. et al. // Chem. Eur. J. 2016. V. 22. № 6. P. 1968.
  21. Minghetti G., Bonati F. // Inorg. Chem. 1974. V. 13. № 7. P. 1600.
  22. Eggleston D.S., Chodosh D. F., Webb R. L. et al. // Acta Crystallogr. Sect. C: Cryst. Struct. Commun. 1986. V. 42. № 1. P. 36.
  23. Irwin M.J., Jia G., Payne N. C. et al. // Organometallics. 1996. V. 15. № 1. Р. 51.
  24. Lentz D., Willemsen S. // J. Organomet. Chem. 2000. V. 612. № 1. P. 96.
  25. Liau R.-Y., Mathieson T., Schier A. et al. // Z. Naturforsch. B. 2002. V. 57. № 8. P. 881.
  26. Schneider W., Angermaier K., Sladek A. et al. // Z. Naturforsch. B. 1996. V. 51. № 6. P. 790.
  27. White-Morris R.L., Olmstead M. M., Balch A. L. et al. // Inorg. Chem. 2003. V. 42. № 21. P. 6741.
  28. White-Morris R.L., Stender M., Tinti D. S. et al. // Inorg. Chem. 2003. V. 42. № 10. P. 3237.
  29. Schmidbaur H., Schier A. // Chem. Soc. Rev. 2008. V. 37. № 9. P. 1931.
  30. Wang C., Li Z. // Mater. Chem. Front. 2017. V. 1. № 11. P. 2174.
  31. Varughese S. // J. Mater. Chem. C. 2014. V. 2. № 18. P. 3499.
  32. Sokolova E.V., Kinzhalov M. A., Smirnov A. S. et al. // ACS Omega. 2022. V. 7. № 38. P. 34454.
  33. Wang W., Zhang Y., Jin W. J. // Coord. Chem. Rev. 2020. V. 404. P. 213107.
  34. Koshevoy I.O., Krause M., Klein A. // Coord. Chem. Rev. 2020. V. 405. P. 213094.
  35. Kashina M. V., Mikherdov A. S. et al. // Angew. Chem. Int. Ed. 2018. V. 57. № 39. P. 12785.
  36. Kashina M.V., Kinzhalov M. A., Smirnov A. S. et al. // Chem. Asian J. 2019. V. 14. P. 3915.
  37. Kryukova M.A., Ivanov D. M., Kinzhalov M. A. et al. // Chem. Eur. J. 2019. V. 25. P. 13671.
  38. Kashina M.V., Ivanov D. M., Kinzhalov M. A. // Crystals. 2021. V. 11. № 7. P. 799.
  39. Hubschle C.B., Sheldrick G. M., Dittrich B. // J. Appl. Crystallogr. 2011. 44. № 6. P. 1281.
  40. Dolomanov O.V., Bourhis L. J., Gildea R. J. et al. // J. Appl. Crystallogr. 2009. V. 42. № 2. P. 339.
  41. CrysAlisPro. Agilent Technologies. Version 1.171.36.20 (release 27–06–2012). Yarnton, England, 2009.
  42. Seki T., Takamatsu Y., Ito H. // J. Am. Chem. Soc. 2016. V. 138. № 19. P. 6252.
  43. Wang M.-J., Wang Z.-Y., Luo P. et al. // Cryst. Growth Des. 2019. V. 19. № 2. P. 538.
  44. Stephany R.W., de Bie M. J.A., Drenth W. // Org. Magn. Reson. 1974. V. 6. № 1. P. 45.
  45. Kinzhalov M.A., Boyarskii V. P. // Russ. J. Gen. Chem. 2015. V. 85. № 10. P. 2313.
  46. Anisimova T.B., Kinzhalov M. A., Guedes da Silva M. F.C. et al. // New J. Chem. 2017. V. 41. № 9. P. 3246.
  47. Eggleston D.S., Chodosh D. F., Webb R. L. et al. // Acta Crystallogr. C. 1986. V. 42. № 1. P. 36.
  48. Bondi A. // J. Phys. Chem. 1964. V. 68. № 3. P. 441.
  49. Alvarez S. // Dalton Trans. 2013. V. 42. № 24. P. 8617.
  50. Desiraju G. R., Ho P. S., Kloo L. et al. // Pure Appl. Chem. 2013. V. 85. P. 1711.
  51. Ivanov D.M., Kinzhalov M. A., Novikov A. S. et al. // Cryst. Growth Des. 2017. V. 17. P. 1353.
  52. Katkova S.A., Mikherdov A. S., Kinzhalov M. A. et al. // Chem. Eur. J. 2019. V. 25. Р. 8590.
  53. Katkova S.A., Mikherdov A. S., Sokolova E. V. et al. // J. Mol. Struct. 2022. V. 1253. P. 132230.
  54. Carlos L.J., Rodríguez L. // Chem. Soc. Rev. 2011. V. 40. № 11. P. 5442.
  55. Coco S., Cordovilla C., Domínguez C. et al. // Dalton Trans. 2008. V. 48. P. 6894.
  56. Dong Y.-B., Chen Z., Yang L. et al. // Dyes Pigm. 2018. V. 150. P. 315.
  57. Irwin M.J., Vittal J. J., Puddephatt R. J. // Organo me tallics. 1997. V. 16. № 15. P. 3541.
  58. Seki T., Ida K., Sato H. et al. // Chem. Eur. J. 2020. V. 26. № 3. P. 735.
  59. Xiao H., Cheung K.-K., Che C.-M. // Dalton Trans. 1996. V. 18. P. 3699.
  60. Yam V.W.-W., Cheng E. C.-C. // Chem. Soc. Rev. 2008. V. 37. № 9. P. 1806.
  61. Shakirova J.R., Grachova E. V., Sizov V. V. et al. // Dalton Trans. 2017. V. 46. № 8. P. 2516.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Scheme 1.

Download (23KB)
3. Fig. 1. Structures of complexes IIa (left), IIb (centre) and IIc (right) according to PCA data with atom numbering scheme.

Download (5MB)
4. Fig. 2. Intermolecular interactions in IIa.

Download (2MB)
5. Fig. 3. Two-layer 2D supramolecular architecture of IIb resulting from a combination of noncovalent interactions. Crystals IIc have a similar supramolecular structure with similar noncovalent interactions.

Download (844KB)
6. Fig. 4. Normalised excitation (dashed line) and luminescence (solid line) spectra for crystalline samples IIb, IIc and IIIa, IIIb at 298 K.

Download (409KB)

Copyright (c) 2024 Российская академия наук