Structural modifications of the platinum(II) isocyanide complexes changing their solid-state luminescence

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Cyclometallated platinum(II) complexes with the general formula [Pt(Рpy)(CNR)2]X (HРpy = 2-phenylpyridine; R = iPr, tBu, Cy; X = BF4, OTf, PF6) containing various alkylisocyanide ligands and counterions are synthesized. The compounds are studied by elemental analysis, ESI HRMS, IR spectroscopy, and 1H, 13C{1H}, and 195Pt{1H} NMR spectroscopy. The structures of [Pt(Рpy)(CNiPr)2]BF4 and [Pt(Рpy)(CNtBu)2]BF4 are determined by XRD (CIF files CCDC nos. 2325595 and 2325527, respectively). The photophysical properties in the solution and in the solid state of the synthesized compounds are studied.

Texto integral

Acesso é fechado

Sobre autores

E. Antonova

St. Petersburg State University

Email: m.kinzhalov@spbu.ru
Rússia, St. Petersburg

M. Sandzhieva

St. Petersburg National Research University of Information Technologies, Mechanics, and Optics

Email: m.kinzhalov@spbu.ru
Rússia, St. Petersburg

M. Kinzhalov

St. Petersburg State University

Autor responsável pela correspondência
Email: m.kinzhalov@spbu.ru
Rússia, St. Petersburg

Bibliografia

  1. Li X., Xie Y., Li Z. // Chem Asian J. 2021. V. 16. № 19. P. 2817. https://doi.org/10.1002/asia.202100784
  2. Lee S., Han W.-S. // Inorg. Chem. Front. 2020. V. 7. № 12. P. 2396. https://doi.org/10.1039/D0QI00001A
  3. Zhang Q.-C., Xiao H., Zhang X. et al. // Chem. Soc. Rev. 2019. V. 378. № . P. 121. https://doi.org/10.1016/j.ccr.2018.01.017
  4. Katkova S.A., Kozina D.O., Kisel K.S. et al. // Dalton Trans. 2023. V. 52. № 14. P. 4595. https://doi.org/10.1039/d3dt00080j.
  5. Zhou X., Lee S., Xu Z. et al. // Chem. Rev. 2015. V. 115. № 15. P. 7944. https://doi.org/10.1021/cr500567r
  6. Eremina A.A., Kinzhalov M.A., Katlenok E.A. et al. // Inorg. Chem. 2020. V. 59. № 4. P. 2209. https://doi.org/10.1021/acs.inorgchem.9b02833
  7. Chan A.Y., Perry I.B., Bissonnette N.B. et al. // Chem. Rev. 2021. V. № . P. https://doi.org/10.1021/acs.chemrev.1c00383
  8. Li K., Chen Y., Wang J. et al. // Coord. Chem. Rev. 2021. V. 433. № . P. 213755. https://doi.org/10.1016/j.ccr.2020.213755
  9. To W.P., Wan Q.Y., Tong G.S.M. et al. // Trends Chem. 2020. V. 2. № 9. P. 796. https://doi.org/10.1016/j.trechm.2020.06.004
  10. Kinzhalov M.A., Grachova E.V., Luzyanin K.V. // Inorg. Chem. Front. 2022. V. 9. № . P. 417. https://doi.org/10.1039/D1QI01288F
  11. Lu B., Liu S., Yan D. // Chin. Chem. Lett. 2019. V. 30. № 11. P. 1908. https://doi.org/10.1016/j.cclet.2019.09.012
  12. Wang W., Zhang Y., Jin W.J. // Coord. Chem. Rev. 2020. V. 404. № . P. https://doi.org/10.1016/j.ccr.2019.213107
  13. Koshevoy I.O., Krause M., Klein A. // Coord. Chem. Rev. 2020. V. 405. № . P. https://doi.org/10.1016/j.ccr.2019.213094
  14. Yoshida M., Kato M. // Coord. Chem. Rev. 2018. V. 355. № . P. 101. https://doi.org/10.1016/j.ccr.2017.07.016
  15. Puttock E.V., Walden M.T., Williams J.A.G. // Coord. Chem. Rev. 2018. V. 367. № . P. 127. https://doi.org/10.1016/j.ccr.2018.04.003
  16. Ravotto L., Ceroni P. // Coord. Chem. Rev. 2017. V. 346. № . P. 62. https://doi.org/10.1016/j.ccr.2017.01.006
  17. Solomatina A.I., Galenko E.E., Kozina D.O. et al. // Chemistry. 2022. V. 28. № 64. P. e202202207. https://doi.org/10.1002/chem.202202207
  18. Sokolova E.V., Kinzhalov M.A., Smirnov A.S. et al. // ACS Omega. 2022. V. 7. № 38. P. 34454. https://doi.org/10.1021/acsomega.2c04110
  19. Saito D., Ogawa T., Yoshida M. et al. // Angew. Chem. Int. Ed. Engl. 2020. V. 59. № 42. P. 18723. https://doi.org/10.1002/anie.202008383
  20. Yoshida M., Kato M. // Coord. Chem. Rev. 2020. V. 408. № . P. https://doi.org/10.1016/j.ccr.2020.213194
  21. Chaaban M., Lee S., Vellore Winfred J.S.R. et al. // Small Struct. 2022. V. 3. № 9. P. 2200043. https://doi.org/10.1002/sstr.202200043
  22. Ogawa T., Sameera W.M.C., Saito D. et al. // Inorg. Chem. 2018. V. 57. № 22. P. 14086. https://doi.org/10.1021/acs.inorgchem.8b01654.
  23. Law A.S., Lee L.C., Lo K.K. et al. // J. Am. Chem.Soc. 2021. V. 143. № 14. P. 5396. https://doi.org/10.1021/jacs.0c13327
  24. Po C., Tam A.Y., Wong K.M. et al. // J. Am. Chem. Soc. 2011. V. 133. № 31. P. 12136. https://doi.org/10.1021/ja203920w
  25. Cave G.W.V., Fanizzi F.P., Deeth R.J. et al. // Organometallics. 2000. V. 19. № 7. P. 1355. https://doi.org/10.1021/om9910423
  26. Liu J., Leung C.H., Chow A.L. et al. // Chem Commun. 2011. V. 47. № 2. P. 719. https://doi.org/10.1039/c0cc03641b
  27. Dobrynin M.V., Sokolova E.V., Kinzhalov M.A. et al. // ACS Appl. Polym. Mater. 2021. V. 3. № 2. P. 857. https://doi.org/10.1021/acsapm.0c01190
  28. Hubschle C.B., Sheldrick G.M., Dittrich B. // J. Appl. Crystallogr. 2011. V. 44. № 6. P. 1281. https://doi.org/10.1107/S0021889811043202
  29. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. № 2. P. 339.
  30. CrysAlisPro. Yarnton (Oxfordshire, England): Agilent Technologies Ltd., 2012.
  31. CrysAlisPro. Yarnton (Oxfordshire, England): Agilent Technologies Ltd., 2014.
  32. CrysAlisPro. Yarnton (Oxfordshire, England): Oxford Diffraction Ltd., 2009.
  33. Katkova S.A., Sokolova E.V., Kinzhalov M.A. // Russ. J. Gen. Chem.. 2023. V. 93. № 1. P. 43. https://doi.org/10.1134/S1070363223010073
  34. Forniés J., Fuertes S., Larraz C. et al. // Organometallics. 2012. V. 31. № 7. P. 2729. https://doi.org/10.1021/om201036z
  35. Kinzhalov M.A., Boyarskii V.P. // Russ. J. Gen. Chem. 2015. V. 85. № 10. P. 2313. https://doi.org/10.1134/s1070363215100175
  36. Pawlak T., Niedzielska D., Vícha J. et al. // J. Organometal. Chem. 2014. V. 759. № . P. 58. https://doi.org/10.1016/j.jorganchem.2014.02.016
  37. Katkova S.A., Mikherdov A.S., Sokolova E.V. et al. // J. Mol. Struct. 2022. V. 1253. № . P. 132230. https://doi.org/10.1016/j.molstruc.2021.132230
  38. Katkova S.A., Eliseev I.I., Mikherdov A.S. et al. // Russ. J. Gen. Chem. 2021. V. 91. № 3. P. 393. https://doi.org/10.1134/S1070363221030099
  39. Martínez-Junquera M., Lara R., Lalinde E. et al. // J. Mater. Chem. C. 2020. V. 8. № 21. P. 7221. https://doi.org/10.1039/D0TC01163K
  40. Martinez-Junquera M., Lalinde E., Moreno M.T. // Inorg. Chem. 2022. V. 61. № 28. P. 10898. https://doi.org/10.1021/acs.inorgchem.2c01400
  41. Shahsavari H.R., Babadi Aghakhanpour R., Hossein-Abadi M. et al. // New J. Chem. 2017. V. 41. № 24. P. 15347. https://doi.org/10.1039/c7nj03110f
  42. Bondi A. // J. Phys. Chem. 1964. V. 68. № 3. P. 441. https://doi.org/10.1021/j100785a001.
  43. Katkova S.A., Luzyanin K.V., Novikov A.S. et al. // New J. Chem. 2021. V. 45. № 6. P. 2948 https://doi.org/10.1039/D0NJ05457G.
  44. Martinez-Junquera M., Lalinde E., Moreno M.T. et al. // Dalton Trans. 2021. V. 50. № 13. P. 4539. https://doi.org/10.1039/d1dt00480h

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Scheme 1: Synthesis of isocyanide complexes I-VIII.

Baixar (120KB)
3. Fig. 1. Structures of the organometallic cation of complexes I (a) and III (b) according to PCA data.

Baixar (192KB)
4. Fig. 2. Non-covalent interactions between organometallic cations in complexes I (a) and III (b).

Baixar (136KB)
5. Fig. 3. Normalized luminescence spectra of powders I-VIII at 298 K.

Baixar (83KB)

Declaração de direitos autorais © Российская академия наук, 2024