Binuclear Diphenyltin(IV) Complexes with Salicylaldimine Ligands. Synthesis, Structure, Electrochemical Properties

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

New binuclear tin(IV) complexes based on salicylic Schiff bases and diphenyltin oxide Ph2SnO were obtained. The structures of the complexes were confirmed by 1H, 13C and 119Sn NMR spectroscopy and X-ray diffraction analysis (CCDC 2433411). UV-Vis spectroscopy of complexes 1–4 showed that a bathochromic shift of all ligand absorption bands was observed upon complexation with the metal fragment. The ability of complexes 1–4 to undergo electrochemical transformations was investigated by cyclic voltammetry. In all cases, the oxidation and reduction of the complexes are irreversible. In the cases of complexes 2–4 with a conjugated bridge, the oxidation of two metal fragments occurs at one potential, whereas complex 1 with an unconjugated adipic bridge has two peaks on the oxidation curve at different potentials, which is probably since the oxidation of two different ‘ends’ of the molecule occurs at different potentials.

Texto integral

Acesso é fechado

Sobre autores

V. Klok

Zelinsky Institute of Organic Chemistry Russian Academy of Sciences Moscow

Email: en@ioc.ac.ru
Rússia, Moscow, 119991

P. Shangin

Zelinsky Institute of Organic Chemistry Russian Academy of Sciences Moscow

Email: en@ioc.ac.ru
Rússia, Moscow, 119991

I. Krylova

Zelinsky Institute of Organic Chemistry Russian Academy of Sciences Moscow

Email: en@ioc.ac.ru
Rússia, Moscow, 119991

M. Minyaev

Zelinsky Institute of Organic Chemistry Russian Academy of Sciences Moscow

Email: en@ioc.ac.ru
Rússia, Moscow, 119991

M. Syroeshkin

Zelinsky Institute of Organic Chemistry Russian Academy of Sciences Moscow

Email: en@ioc.ac.ru
Rússia, Moscow, 119991

V. Pechennikov

First Moscow State Medical University

Email: en@ioc.ac.ru
Rússia, Moscow, 119048

M. Egorov

Zelinsky Institute of Organic Chemistry Russian Academy of Sciences Moscow

Email: en@ioc.ac.ru
Rússia, Moscow, 119991

E. Nikolaevskaya

Zelinsky Institute of Organic Chemistry Russian Academy of Sciences Moscow

Autor responsável pela correspondência
Email: en@ioc.ac.ru
Rússia, Moscow, 119991

Bibliografia

  1. Nikolaevskaya E.N., Syroeshkin M.A., Egorov M.P. // Mend. Commun. 2023. V. 33, P. 733. https://doi.org/10.1016/j.mencom.2023.10.001
  2. Cozzi P.G. // Chem. Soc. Rev. 2004. V. 33. P. 410. https://doi.org/10.1039/b307853c
  3. Fallah-Mehrjardi M., Kargar H., Munawar K.S. // Inorg. Chim. Acta. 2024. V. 560. P. 121835. https://doi.org/10.1016/j.ica.2023.121835
  4. Juyal V.K., A. Pathak M., Panwar S.C. et al. // J. Organomet. Chem. 2023. V. 999. P. 122825. https://doi.org/10.1016/j.jorganchem.2023.122825
  5. Iacopetta D., Catalano A., Ceramella J. et al. // Molecules. 2025. V. 30. P. 207. https://doi.org/10.3390/molecules30020207
  6. Lindoy L.F., Park K.-M., Lee S.S. // Chem. Soc. Rev. 2013. V. 42. P. 1713. https://doi.org/10.1039/C2CS35218D
  7. Middya P., Roy D., Chattopadhyay S. // Inorg. Chim. Acta. 2023. V. 548. P. 121377. https://doi.org/10.1016/j.ica.2023.121377
  8. Zhang J., Xu L., Wong W.-Y. // Coord. Chem. Rev. 2018. V. 355. P. 180. https://doi.org/10.1016/j.ccr.2017.08.007
  9. Akbulatov A.F., Akyeva A.Y., Shangin P.G. et al. // Membranes. 2023. V. 13. P. 439. https://doi.org/10.3390/membranes13040439
  10. Singh H.L., Khaturia S., Solanki V.S. et al. // J. Indian Chem. Soc. 2023. V. 100. P. 100945. https://doi.org/10.1016/j.jics.2023.100945
  11. Dieng M., Gningue-Sall D., Jouikov V. // Main Group Met. Chem. 2012. V. 35. P. 141. https://doi.org/10.1515/mgmc-2012-0059
  12. Nikolaevskaya E.N., Saverina E.A., Starikova A.A. et al. // Dalton Trans. 2018. V. 47. P. 17127. https://doi.org/10.1039/C8DT03397H
  13. Nikolaevskaya E.N., Shangin P.G., Starikova et al. // Inorg. Chim. Acta. 2019. V. 495. P. 119007. https://doi.org/10.1016/j.ica.2019.119007
  14. Shangin P.G., Krylova I.V., Lalov A.V. et al. // RSC Adv. 2021. V. 11. P. 21527. https://doi.org/10.1039/D1RA02691G
  15. Shangin P.G., Akyeva A.Y., Vakhrusheva D.M. et al. // Organometallics. 2023. V. 42. P. 2541. https://doi.org/10.1021/acs.organomet.2c00607
  16. Kozmenkova A.Y., Timofeeva V.A., Mankaev B.N. et al. // Eur. J. Inorg. Chem. 2021. P. 2755. https://doi.org/10.1002/ejic.202100369
  17. Baryshnikova S.V., Bellan E.V., Poddel’sky A.I. et al. // Eur. J. Inorg. Chem. 2016. V. 2016. P. 5230. https://doi.org/10.1002/ejic.201600885
  18. Baryshnikova S.V., Poddel’sky A.I., Bellan E.V. et al. // Inorg. Chem. 2020. V. 59. P. 6774. https://doi.org/10.1021/acs.inorgchem.9b03757
  19. Baryshnikova S.V., Bellan E.V., Poddel’sky A.I. et al // Inorg. Chem. Comm. 2016. V. 69. P. 94. https://doi.org/10.1016/j.inoche.2016.05.003
  20. Smolyaninov I.V., Burmistrova D.A., Pomortseva N.P. et al. // Russ. J. Coord. Chem. 2023. V. 49. P. 124. https://doi.org/10.1134/S1070328423700446
  21. Protasenko N.A., Baryshnikova S.V., Cherkasov A.V. et al. // Russ. J. Coord. Chem. 2022. V. 48. P. 478. https://doi.org/10.1134/S1070328422070077
  22. Piskunov A.V., Trofimova O.Yu., Fukin G.K. et al. // Dalton Trans. 2012. V. 41. P. 10970. https://doi.org/10.1039/C2DT30656E
  23. Krylova I.V., Proshutinskaya V.Yu., Labutskaya L.D. et al. // J. Organomet. Chem. 2025. V. 1028. P. 123527. https://doi.org/10.1016/j.jorganchem.2025.123527
  24. Krylova I.V., Labutskaya L.D., Markova M.O. et al. // New J. Chem. 2023. V. 47. P. 11890. https://doi.org/10.1039/D3NJ01993D
  25. Krylova I.V., Saverina E.A., Rynin S.S. et al. // Mend. Commun. 2020. V. 30. P. 563. https://doi.org/10.1016/j.mencom.2020.09.003
  26. Pandey V.K., Singh V.K., Chandra S. et al. // J. Coord. Chem. 2019. V. 72. P. 1537. https://doi.org/10.1080/00958972.2019.1606908
  27. Dubey M., Kumar A., Gupta R.K. et al. // Chem. Commun. 2014. V. 50. P. 8144. https://doi.org/10.1039/C4CC02591A
  28. Ali M.S., Kuraijam D., Karnik S. et al. // Kuwait J. Sci. 2023. V. 50. P. 1. https://doi.org/10.48129/kjs.21599
  29. Wilson B.H., Scott H.S., Qazvini O.T. et al. // Chem. Commun. 2018. V. 54. P. 13391. https://doi.org/10.1039/C8CC07227B
  30. Rakesh K.P., Vivek H.K., Manukumar H.M. et al. // RSC. Adv. 2018. V. 8. P. 5473. https://doi.org/10.1039/C7RA13661G
  31. Li Z., Wang Q., Wang J. et al. // Inorg. Chim. Acta. 2020. V. 500. P. 119231. https://doi.org/10.1016/j.ica.2019.119231
  32. Perrin D.D., Armarego W.Li.F., Perrin D.R. Purification of Laboratory Chemicals. Oxford: Pergamon Press, 1988.
  33. CrysAlisPro. Version 1.171.41. Rigaku Oxford Diffraction, 2021.
  34. Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. № 1. P. 3. http://doi.org/10.1107/S2053273314026370
  35. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. № 1. P. 3. http://doi.org/10.1107/S2053229614024218
  36. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Cryst. 2009. V. 42. P. 229. http://doi.org/10.1107/S0021889808042726

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Scheme 1. Synthesis of complexes I–IV using ligands L¹–L⁴.

Baixar (358KB)
3. Fig. 1. Molecular structure of complex III. Hydrogen atoms are not shown. Selected bond lengths (Å): Sn(1)–O(1) 2.0755(19), Sn(1)–O(2) 2.1307(17), Sn(1)–N(1) 2.163(2), Sn(2)–O(3) 2.0723(18), Sn(2)–O(4) 2.1281(17), Sn(2)–N(3) 2.175(2), N(1)–C(1) 1.299(4), N(1)–N(2) 1.392(3), N(2)–C(20) 1.308(4), N(3)–N(4) 1.396(3), N(3)–C(28) 1.293(3), N(4)–C(27) 1.315(3).

Baixar (268KB)
4. Fig. 2. Ultraviolet spectra of complexes I (a) and II (b) (5 × 10⁻⁵ M) and the starting ligands L¹ and L² (2.5 × 10⁻⁵ M) in DMF.

Baixar (117KB)
5. Fig. 3. Ultraviolet spectra of complexes III (a) and IV (b) (4 × 10⁻⁵ M) and the initial ligands L³ and L⁴ (1 × 10⁻⁴ M) in DMF.

Baixar (109KB)
6. Fig. 4. CVA curves of complex I and the initial ligand L¹. Concentration 2.5 mM in 0.1 M NBu₄PF₆/DMF, potential values ​​are given relative to the Fc/Fc⁺ pair, potential scan rate 0.1 V s⁻¹. a) reduction; b) oxidation.

Baixar (142KB)
7. Fig. 4. CVA curves of complex I and the initial ligand L¹. Concentration 2.5 mM in 0.1 M NBu₄PF₆/DMF, potential values ​​are given relative to the Fc/Fc⁺ pair, potential scan rate 0.1 V s⁻¹. a) reduction; b) oxidation.

Baixar (134KB)
8. Fig. 5. CVA curves of complex II and the initial ligand L². Concentration 2.5 mM in 0.1 M NBu₄PF₆/DMF, potential values ​​are given relative to the Fc/Fc⁺ pair, potential scan rate 0.1 V s⁻¹. a) reduction; b) oxidation.

Baixar (134KB)
9. Fig. 6. CVA curves of complex III and the initial ligand L³. Concentration 2.5 mM in 0.1 M NBu₄PF₆/DMF, potential values ​​are given relative to the Fc/Fc⁺ pair, potential scan rate 0.1 V s⁻¹. a) reduction; b) oxidation.

Baixar (135KB)
10. Fig. 7. CVA curves of complex IV and the initial ligand L⁴. Concentration 2.5 mM in 0.1 M NBu₄PF₆/DMF, potential values ​​are given relative to the Fc/Fc⁺ pair, potential scan rate 0.1 V s⁻¹. a) reduction; b) oxidation.

Baixar (128KB)
11. Fig. 8. CVA curves of complex IV reduction at different potential scan rates (0.1–1 V s⁻¹). Concentration 2.5 mM in 0.1 M NBu₄PF₆/DMF, potentials are given relative to the Fc/Fc⁺ pair.

Baixar (171KB)

Declaração de direitos autorais © Российская академия наук, 2025