Синтез и строение комплексов марганца с N,N’-бис[(2,4,6-триметилфенил)имино]аценафтеном

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Разработаны методы синтеза новых комплексов марганца(II) с N,N’-бис[(2,4,6-триметилфенил)имино]аценафтеном (Тmp-bian): [Mn(Тmp-bian)Br2] (I), [Mn(Tmp-bian)(EtOH)Br2] (Ia), [Mn (Tmp-bian)Cl2] (II), [Mn(Tmp-bian)2(ClO4)2] (III) и [Mn(Tmp-bian)2(OTs)2] (IV). Полученные соединения охарактеризованы с помощью элементного анализа и ИК-спектроскопии. Методом рентгеноструктурного анализа определена молекулярная структура для I, Iа и III (ССDC № 233510–233512). С помощью квантово-химических расчетов в рамках теории функционала плотности (DFT) установлено электронное строение для I и III.

Полный текст

Доступ закрыт

Об авторах

Ю. А. Ларичева

Институт неорганической химии им. А.В. Николаева СО РАН

Email: nikolaj.romashev75@gmail.com
Россия, Новосибирск

Ч. Гуань

Новосибирский национальный исследовательский государственный университет

Email: nikolaj.romashev75@gmail.com
Россия, Новосибирск

Н. В. Куратьева

Институт неорганической химии им. А.В. Николаева СО РАН

Email: nikolaj.romashev75@gmail.com
Россия, Новосибирск

Н. Ф. Ромашев

Институт неорганической химии им. А.В. Николаева СО РАН

Автор, ответственный за переписку.
Email: nikolaj.romashev75@gmail.com
Россия, Новосибирск

А. Л. Гущин

Институт неорганической химии им. А.В. Николаева СО РАН

Email: nikolaj.romashev75@gmail.com
Россия, Новосибирск

Список литературы

  1. Kallmeier F., Kempe R. // Angew. Chem. Int. Ed. 2018. V. 57. № 1. P. 46.
  2. Najafpour M. M., Allakhverdiev S. I. // Int. J. Hydrogen Energy. 2012. V. 37. № 10. P. 8753.
  3. Mallick Ganguly O., Moulik S. // Dalton Trans. 2023. V. 52. № 31. P. 10639.
  4. Vinogradova K. A., Shekhovtsov N. A., Berezin A. S. et al. // Inorg. Chem. Commun. 2019. V. 100. P. 11.
  5. Berezin A.S., Vinogradova K.A., Nadolinny V.A. et al. // Dalton Trans. 2018. V. 47. № 5. P. 1657.
  6. Artem’Ev A.V., Davydova M.P., Berezin A.S. et al. // ACS Appl. Mater. Interfaces. 2022. V. 14. № 27. P. 31000.
  7. Davydova M. ., Bauer I.A., Brel V.K. et al. // Eur. J. Inorg. Chem. 2020. V. 2020. № 8. P. 695–703.
  8. Artem’ev A.V., Davydova M.P., Rakhmanova M.I. et al. // Inorg. Chem. Front. 2021. V. 8. № 15. P. 3767.
  9. Artem’ev, A.V., Kashevskii A.V., Bogomyakov A.S. et al. // Dalton Trans. 2017. V. 46. № 18. P. 5965.
  10. Hu J. Q., Song E. H., Ye S. et al // J. Mater. Chem. C. 2017. V. 5. № 13. P. 3343.
  11. Zou S., Liu Y., Li J. et al. // J. Am. Chem. Soc. 2017. V. 139. № 33. P. 11443.
  12. Davydova M., Meng L., Rakhmanova M.I. et al. // Adv. Mater. 2023. V. 35. № 35. P. 2303611.
  13. Qin Y., She P., Huang X., Huang W. et al. // Coord. Chem. Rev. 2020. V. 416. P. 213331
  14. van Asselt R., Gielens E.E.C.G., Rülke R.E. et al. // J. Am. Chem. Soc. 1994. V. 116. № 3. P. 977.
  15. Fomenko I.S., Romashev N.F., Gushchin. A.L. // Coord. Chem. Rev. 2024. V. 514. P. 215845.
  16. Fedushkin I.L., Skatova A.A., Chudakova V.A. et al. // Angew. Chem. Int. Ed. 2003. V. 42. № 28. P. 3294.
  17. Bernauer J., Pölker J., Jacobi von Wangelin A. // ChemCatChem. 2022. V. 14. № 1. Art. e202101182.
  18. Fomenko I.S., Koshcheeva O.S., Kuznetsova N.I. et al. // Catalysts. 2023. V. 13. № 5. P. 849.
  19. Fomenko I. S., Gongola M. I., Shul’pina L. S. et al. // Catalysts. 2022. V. 12. № 10. P. 1168.
  20. Komlyagina V.I., Romashev N.F., Kokovkin V. et al. // Molecules. 2022. V. 27. № 20. P. 6961.
  21. Komlyagina V.I., Romashev N.F., Besprozvannykh V.K. et al. // Inorg. Chem. 2023. V. 62. № 29. P. 11541.
  22. Romashev N.F., Abramov P.A., Bakaev I. . et al. // Inorg. Chem. 2022. V. 61. № 4. P. 2105.
  23. Hasan K., Zysman-Colman E. // Inorg. Chem. 2012. V. 51. № 22. P. 12560.
  24. Geary E.A.M., Yellowlees L.J., Jack L.A. et al. // Inorg. Chem. 2005. V. 44. № 2. P. 242.
  25. Bakaev I.V., Romashev N.F., Komlyagina V.I. et al. // New J. Chem. 2023. V. 47. № 40. P. 18825.
  26. Schmiege B.M., Carney M.J., Small B.L. et al. // Dalton Trans. 2007. № 24. P. 2547.
  27. Zhou M., Li X., Bu D.et al. // Polyhedron. 2018. V. 148. P. 88.
  28. Carrington S.J., Chakraborty I., Mascharak P.K. // Dalton Trans. 2015. V. 44. № 31. P. 13828.
  29. Fedushkin I.L., Sokolov V.G., Makarov V.M. et al. // Russ. Chem. Bull. 2016. V. 65. № 6. P. 1495.
  30. Bermejo M.R., Perez M.C., Fondo M. et al. // Synth. React. Inorg. Met. Chem. 1997. V. 27. № 7. P. 1009.
  31. Girolami G.S. // Inorg. Synth. 2002. V. 33. P. 91.
  32. El-Ayaan U., Murata F., El-Derby S. et al. // J. Mol. Struct. 2004. V. 692. № 1–3. P. 209.
  33. te Velde G., Bickelhaup, F.M., Baerends E.J. et al. // J. Comput. Chem. 2001. V. 22. № 9. P. 931.
  34. Van Lenthe E., Baerends E.J. // J. Comput. Chem. 2003. V. 24. № 9. P. 1142.
  35. Van Lenthe E., Snijders J.G., Baerends E.J. // J. Chem. Phys. 1996. V. 105. № 15. P. 6505.
  36. APEX2 (version 2.0), SAINT (version 8.18c), and SADABS (version 2.11), Bruker Advanced X-ray Solutions. Madison (WI, USA): Bruker AXS Inc., 2000–2012.
  37. Bruker Apex3 software suite: Apex3, SADABS-2016/2 and SAINT, version 2019.1-0; Bruker AXS Inc.: Madison, WI, 2017.
  38. Sheldrick G.M. SADABS. Program for Scaling and Correction of Area Detector Data. Göttingen (Germany): Unive. of Göttingen, 1996.
  39. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. № 1. P. 3.
  40. Singh G., Kapoor I.P.S., Kumar D. et al. // Inorg. Chim. Acta. 2009. V. 362. № 11. P. 4091.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Схема 1. Cинтез комплексов Mn/BIAN

Скачать (380KB)
3. Схема 2. Cинтез металлоорганических комплексов Mn/BIAN

Скачать (100KB)
4. Схема 3

Скачать (50KB)
5. Схема 4. Синтез комплексов марганца I–IV

Скачать (274KB)
6. Рис. 1. Молекулярная структура комплексов I и Iа по данным РСА. На врезках показаны выбранные углы координационного узла Mn–Br(2) –N(2) (слева) и Mn–Br(2)–N(2)–O (справа). Атомы водорода для ясности опущены

Скачать (176KB)
7. Рис. 2. Молекулярная структура комплекса III по данным РСА (а); выбранные ракурсы координационного узла Mn–N(2)–O(2) (б). Атомы водорода не показаны

Скачать (169KB)
8. Рис. 3. Общий вид и энергетические уровни граничных орбиталей для основного состояния комплекса I. Показаны ВЗМО, ВЗМО–1, ВЗМО–2, ВЗМО–3, НСМО, НСМО+1

Скачать (214KB)
9. Рис. 4. Общий вид и энергетические уровни граничных орбиталей для основного состояния комплекса III. Показаны ВЗМО, ВЗМО–1, ВЗМО–2, ВЗМО–3, НСМО, НСМО+1

Скачать (265KB)

© Российская академия наук, 2024