Синтез и люминесцентные свойства карбонил-изонитрильного комплекса Re(I) на основе ментол-модифицированного фенантролина
- Авторы: Давыдова М.П.1, Агафонцев А.М.2, Юдин В.Н.1, Рахманова М.И.1, Артемьев А.В.1
-
Учреждения:
- Институт неорганической химии им. А.В. Николаева СО РАН
- Новосибирский институт органической химии им. Н.Н. Ворожцова СО РАН
- Выпуск: Том 51, № 7 (2025)
- Страницы: 449-455
- Раздел: Статьи
- URL: https://rjonco.com/0132-344X/article/view/688156
- DOI: https://doi.org/10.31857/S0132344X25070036
- EDN: https://elibrary.ru/KPMXLL
- ID: 688156
Цитировать
Полный текст



Аннотация
На основе 1,10-фенантролинового лиганда (L), содержащего в положении 2 фрагмент ментола (MtO–), синтезирован карбонил-изонитрильный комплекс состава [Re(CO)3(L)(m-XylylNC)]OTf (m-XylylNC — 2,6-диметилфенилизоцианид). В катионной части этого комплекса атом Re(I) имеет искаженное октаэдрическое окружение, образованное N,N′-хелатным лигандом L, одним изонитрильным и тремя СО-лигандами. При комнатной температуре полученное соединение проявляет ярко-зеленую фосфоресценцию в твердом состоянии и в растворе с квантовыми выходами 15 и 10% соответственно.
Ключевые слова
Полный текст

Об авторах
М. П. Давыдова
Институт неорганической химии им. А.В. Николаева СО РАН
Email: chemisufarm@yandex.ru
Россия, Новосибирск
А. М. Агафонцев
Новосибирский институт органической химии им. Н.Н. Ворожцова СО РАН
Email: chemisufarm@yandex.ru
Россия, Новосибирск
В. Н. Юдин
Институт неорганической химии им. А.В. Николаева СО РАН
Email: chemisufarm@yandex.ru
Россия, Новосибирск
М. И. Рахманова
Институт неорганической химии им. А.В. Николаева СО РАН
Email: chemisufarm@yandex.ru
Россия, Новосибирск
А. В. Артемьев
Институт неорганической химии им. А.В. Николаева СО РАН
Автор, ответственный за переписку.
Email: chemisufarm@yandex.ru
Россия, Новосибирск
Список литературы
- Kirgan R.A., Sullivan B.P., Rillema D.P. // Photochemistry and photophysics of coordination compounds II / Eds. Balzani V., Campagna S. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. P. 45.
- Abramov P.A., Dmitriev A.A., Kholin K.V. et al. // Electrochim. Acta. 2018, V. 270. P. 526. https://doi.org/10.1016/j.electacta.2018.03.111
- Abramov P.A., Brylev K.A., Vorob’ev A.Y. et al. // Polyhedron. 2017. V. 137. P. 231. https://doi.org/10.1016/j.poly.2017.08.046
- Абрамов П.А. // Журн. структур. химии. 2021 V. 62. P. 1513. https://doi.org/10.26902/JSC_id79933 (Abramov P.A. // J. Struct. Chem. 2021. V. 62. P. 1416. https://doi.org/10.1134/S0022476621090109).
- Abramov P.A., Gritsan N.P., Suturina E. A. et al. // Inorg. Chem. 2015. V. 54. P. 6727. https://doi.org/10.1021/acs.inorgchem.5b00407
- Nayeri S., Jamali S., Pavlovskiy V.V. et al. // Eur. J. Inorg. Chem. 2019. V. 2019. P. 4350. https://doi.org/10.1002/ejic.201900617
- Shakirova J.R., Nayeri S., Jamali S. et al. // ChemPlusChem. 2020. V. 85. P. 2518. https://doi.org/10.1002/cplu.202000597
- Kisel K.S., Baigildin V.A., Solomatina A.I. et al. // Molecules. 2023. V. 28. P. 348. https://doi.org/10.3390/molecules28010348
- Kisel K.S., Shakirova J.R., Pavlovskiy V.V. et al. // Inorg. Chem. 2023. V. 62. P. 18625. https://doi.org/10.1021/acs.inorgchem.3c02915
- Kisel K.S., Eskelinen T., Zafar W. et al. // Inorg. Chem. 2018. V. 57. P. 6349. https://doi.org/10.1021/acs.inorgchem.8b00422
- Kalyanasundaram K. // Faraday Trans. 2. 1986. V. 82. P. 2401. https://doi.org/10.1039/F29868202401
- Yu T., Tsang D.P.-K., Au V. K.-M. et al. // Chem. Eur. J. 2013. V. 19. P. 13418. https://doi.org/10.1002/chem.201301841
- Sacksteder L., Lee M., Demas J. et al. // J. Am. Chem. Soc. 1993. V. 115. P. 8230. https://doi.org/10.1021/ja00071a036
- Villegas J.M., Stoyanov S.R., Huang W. et al. // Inorg. Chem. 2005 V. 44. P. 2297. https://doi.org/10.1021/ic048786f
- Favale J.M., Jr., Danilov E.O., Yarnell J E. et al. // Inorg. Chem. 2019 V. 58. P. 8750. https://doi.org/10.1021/acs.inorgchem.9b01155
- Klemens T., Świtlicka A., Szlapa-Kula A. et al. // Organometallics. 2019. V. 38. P. 4206. https://doi.org/10.1021/acs.organomet.9b00517
- Taydakov I.V., Vashchenko A.A., Lyssenko K.A. et al. // ARKIVOC. 2017. V. 2017, P. 205. https://doi.org/10.24820/ark.5550190.p010.130
- Hostachy S., Policar C., Delsuc N. // Coord. Chem. Rev. 2017. V. 351. P. 172. https://doi.org/10.1016/j.ccr.2017.05.004
- Chelushkin P.S., Shakirova J.R., Kritchenkov I.S. et al. // Dalton Trans. 2022 V. 51. P. 1257. https://doi.org/10.1039/D1DT03077A
- Leonidova A., Gasser G. // ACS Chem. Biol. 2014. V.9. P. 2180. https://doi.org/10.1021/cb500528c
- Lee L.C.-C., Leung K.-K., Lo K.K.-W. // Dalton Trans. 2017. V. 46. P. 16357. https://doi.org/10.1039/C7DT03465B
- Kuninobu Y., Takai K. // Chem. Rev. 2011. V. 111. P. 1938. https://doi.org/10.1021/cr100241u
- Kisel K.S., Samandarsangari M., Sokolov V.V. et al. // Opt. Mater. 2025. V. 159. P. 116589. https://doi.org/10.1016/j.optmat.2024.116589
- Saleh N., Srebro M., Reynaldo T. et al. // Chem. Commun. 2015. V. 51. P. 3754. https://doi.org/10.1039/C5CC00453E
- Gauthier E.S., Abella L., Hellou N. et al. // Angew. Chem. Int. Ed. 2020. V. 59 P. 8394. https://doi.org/10.1002/anie.202002387
- Saleh N., Kundu D., Vanthuyne N. et al. // ChemPlusChem. 2020, Vol. 85, P. 2446. https://doi.org/10.1002/cplu.202000559
- Gauthier E.S., Abella L., Caytan E. et al. // Chem. Eur. J. 2023, Vol. 29, P. e202203477. https://doi.org/10.1002/chem.202203477
- Giuso V., Gourlaouen C., Delporte-Pébay M. et al. // Phys. Chem. Chem. Phys. 2024. V. 26. P. 4855. https://doi.org/10.1039/D3CP04300B
- Kundu D., Jelonek D., Del Rio N. et al. // Chem. Asian J. год ? V. n/a. Аrt. e202401735. https://doi.org/10.1002/asia.202401735
- Davydova M.P., Xu T., Agafontsev A.M. et al. // Angew. Chem. Int. Ed. 2025. V. 64. Аrt. e202419788. https://doi.org/10.1002/anie.202419788
- Bruker Apex3 Software Suite: Apex3, SADABS‐2016/2 and SAINT 8.40a. 2017. V. ? Bruker AXS Inc., Madison, WI, USA.
- Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053273314026370
- Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053229614024218
- Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Crystallogr. 2009. V. 42, P. 339. https://doi.org/10.1107/S0021889808042726
- van der Sluis P., Spek A.L. // Acta Crystallogr. A. 1990. V. 46. P. 194. https://doi.org/10.1107/S0108767389011189
- Ortega J.V., Khin K., van der Veer W.E. et al. // Inorg. Chem. 2000. V. 39. P. 3038. https://doi.org/10.1021/ic0006910
- Aechter B., Knizek J., Nöth H. et al. // Z. Kristallogr. NCS. 2005. V. 220. P. 107. https://doi.org/10.1524/ncrs.2005.220.14.107
- King A.P., Marker S.C., Swanda R.V. et al. // Chem. Eur. J. 2019. V. 25. P. 9206. https://doi.org/10.1002/chem.201902223
- Ko C.-C., Ng C.-O., Yiu S.-M. // Organometallics. 2012. V. 31. P. 7074. https://doi.org/10.1021/om300526e
- Marker S.C., King A.P., Granja S. et al. // Inorg. Chem. 2020. V. 59. P. 10285. https://doi.org/10.1021/acs.inorgchem.0c01442
- Тюпина М.Ю., Мирославов А.Е., Сидоренко Г.В. и др. // Журн. общ. химии. 2022. V. 92. P. 110. https://doi.org/10.31857/S0044460X22010127 (Tyupina M.Y., Miroslavov A.E., Sidorenko G.V. et al. // Russ. J. Gen. Chem. 2022, V. 92. P. 69. https://doi.org/10.1134/S1070363222010108).
Дополнительные файлы
