Monovalent Thulium. Synthesis and Properties of TmI

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The reaction of thulium shavings with iodine at 680°C gave a poorly separable product mixture A, consisting of thulium metal (65%), TmI2 (14%), and TmI (21%). Monovalent thulium iodide could not be isolated in a pure state, but its presence among the products was confirmed, apart from magnetic measurements, by reactions with naphthalene and perylene, which proceed under mild conditions. The reaction of TmI with naphthalene, which takes place at –40°C, affords the trivalent thulium complex with naphthalene dianion, [TmI(C10H8)(DME)3]. The multistep reaction with perylene starts with the formation of the divalent thulium radical anion complex, [(TmI)+(C20H12)–•(DME)3], and ends in the formation of trivalent thulium complex, [(TmI)2+(C20H12)2–(DME)3]. The presence of a radical anion intermediate in the reaction mixture in an early stage was confirmed by ESR spectroscopy.

作者简介

A. Fagin

Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, Nizhny Novgorod, Russia

Email: mboch@iomc.ras.ru
Россия, Нижний Новгород

S. Bukhvalova

Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, Nizhny Novgorod, Russia

Email: sv-4.4.1991@iomc.ras.ru
Россия, Нижний Новгород

V. Kuropatov

Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, Nizhny Novgorod, Russia

Email: mboch@iomc.ras.ru
Россия, Нижний Новгород

M. Bochkarev

Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, Nizhny Novgorod, Russia

编辑信件的主要联系方式.
Email: mboch@iomc.ras.ru
Россия, Нижний Новгород

参考

  1. Arnold P.L., Cloke F.G.N., Nixon J. F. // Chem. Commun. 1998. P. 797.
  2. Arnold P.L., Cloke F.G.N., Hitchcock P.B., Nixon J.F. // J. Am. Chem. Soc. 1996. V. 118. № 32. P. 7630.
  3. Martin J.D., Corbett J.D. // Angew. Chem. Int. Ed. E-ngl. 1995. V. 34. № 2. P. 233.
  4. Bochkarev M.N. // Coord. Chem. Rev. 2004. V. 248. P. 835.
  5. Fong F.K., Cape J.A., Wong E.Y. // Phys. Rev. 1966. V. 151. P. 299.
  6. Dirscherl R., Lee H.U. // J. Chem. Phys. 1980. V. 73. P. 3831.
  7. Li W.-L., Chen T.-T., Chen W.-J. et al. // Nature Commun. 2021. V. 12. P. 6467.
  8. Kȁning M., Hitzschke L., Schalk B. et al. // J. Phys. D. 2011. V. 44. № 22. Art. 224005.
  9. Kȁning M., Schalk B., Schneidenbach H. // J. Phys. D. 2007. V. 40. P. 3815.
  10. Бочкарев М.Н., Фагин А.А., Хорошеньков Г.В. // Изв. АН. Сер. хим. 2002. С. 1757 (Bochkarev M.N., Fagin A.A., Khoroshenkov G.V. // Russ. Chem. Bull. Int. Ed. 2002. V. 51. P. 1909).
  11. Хорошеньков Г.В., Фагин А.А., Бочкарев М.Н. и др. // Изв. АН. Сер. хим. 2003. С. 1627 (Khoroshenkov G.V., Fagin A.A., Bochkarev M.N. et al. // Russ. Chem. Bull. 2003. V. 52. P. 1715).
  12. Фагин А.А., Бухвалова С.Ю., Бочкарев М.Н. // Коорд. химия. 2022. Т. 48. № 11. С. 686 (Fagin A.A., Bukhvalova S.Yu., Bochkarev M.N. // Russ. J. Coord. Chem. 2022. V. 48. P. 741). https://doi.org/10.1134/S1070328422110045
  13. Бочкарев М.Н., Протченко А.П. // Приборы и техника эксперимента. 1990. № 1. С. 194.
  14. Bochkarev M.N., Fedushkin I.L., Fagin A.A. et al. // Angew. Chem. Int. Ed. 1997. V. 36. № 1–2. P. 133.
  15. Bochkarev M.N., Fedushkin I.L., Fagin A.A. et al. // Chem. Commun. 1997. P. 1783.
  16. Evans W.J., Allen N.T., Ziller J.W. // J. Am. Chem. Soc. 2000. V. 122. P. 11749.
  17. Levason W., Matthews M.L., Reid G. et al. // Dalton Trans. 2004. P. 51.
  18. Taylor W.V., Xie Z.-L., Cool N.I. et al. // Inorg. Chem. 2018. V. 57. № 16. P. 10364.
  19. Brown M.D., Levason W., Reid G. et al. // Dalton Trans. 2006. P. 5648.
  20. Mashima K., Nakayama Y., Nakamura A. et al. // J. Organomet. Chem. 1994. V. 473. P. 85.
  21. Münzfeld L., Schoo C., Bestgen S. et al. // Nature Commun. 2019. V. 10. Art. 3135.
  22. Segal B.G., Kaplan M., Fraenkel G.K. // J. Chem. Phys. 1965. V. 43. P. 4191.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (10KB)
3.

下载 (24KB)
4.

下载 (104KB)
5.

下载 (33KB)

版权所有 © А.А. Фагин, С.Ю. Бухвалова, В.А. Куропатов, М.Н. Бочкарев, 2023