Tetrapyridineplatinum(II) Carboxylates: Synthesis and Crystal Structure

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A series of mono- and bimetallic cation-anionic complexes based on the [PtPy4]2+ cation with different single-charge anions of carboxylic acids (RCOO–) is synthesized and structurally characterized. A synthetic approach to the preparation of tetrapyridineplatinum complexes [PtPy4]2+ soluble in polar solvents from available reagents is developed. The reaction of tetrapyridineplatinum dichloride [PtPy4](Cl)2 with silver acetate or trifluoroacetate affords compounds [PtPy4](OOCMe)2·6H2O (I) and [PtPy4](OOCCF3)2· 2H2O (II) in the form of crystalline hydrates (CIF files CCDC nos. 2161100 and 2161101, respectively) in high yields. Other carboxylates can be prepared by the treatment of compound I with an excess of a stronger acid, for example, trifluoroacetic acid, with the formation of the corresponding complex trifluoroacetate [PtPy4](OOCCF3)2·4CF3COOH (IIa) (CIF file CCDC no. 2161102). Another method consists of the displacement of acetic acid with an excess of a lowly volatile acid, for example, pivalic acid, when [PtPy4](Piv)2· 5HPiv (III) is formed from the acid melt, and solvatomorph [PtPy4](Piv)2·4HPiv·3C6H12 (IIIa) (CIF files CCDC nos. 2161103 and 2161104, respectively) is formed in a cyclohexane medium. Heteroanionic heterometallic complex [PtPy4](OOCFc)(OOCMe) (IV) (CIF file CCDC no. 2161105) is shown to be formed by the reaction of complex I with ferrocenecarboxylic acid under mild conditions.

作者简介

I. Yakushev

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia

Email: cs68@mail.ru
Россия, Москва

M. Nesterenko

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia; Higher Chemical College of the Russian Academy of Sciences, Mendeleev University of Chemical Technology of Russia, Moscow, Russia

Email: cs68@mail.ru
Россия, Москва; Россия, Москва

P. Dorovatovskii

National Research Center Kurchatov Institute, Moscow, Russia

Email: cs68@mail.ru
Россия, Москва

A. Kornev

Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow oblast, Russia

Email: cs68@mail.ru
Россия, Черноголовка

A. Maksimova

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia; Higher Chemical College of the Russian Academy of Sciences, Mendeleev University of Chemical Technology of Russia, Moscow, Russia

Email: cs68@mail.ru
Россия, Москва; Россия, Москва

A. Popova

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia; Peoples’ Friendship University of Russia, Moscow, Russia

Email: cs68@mail.ru
Россия, Москва; Россия, Москва

N. Cherkashina

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia

Email: cs68@mail.ru
Россия, Москва

A. Churakov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia

Email: cs68@mail.ru
Россия, Москва

M. Vargaftik

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia

编辑信件的主要联系方式.
Email: cs68@mail.ru
Россия, Москва

参考

  1. Treese S.A., Pujado P.R., Jones D.S.J. Handbook of Petroleum Processing. Springer, 2015. P. 317.
  2. Song J.Y., Jang J.H., Chuang S., Joo J.M. // Bull. Korean Chem. Soc. 2021. V. 42. P. 489.
  3. Labinger J.A. // Chem. Rev. 2016. V. 117. № 13. P. 8483.
  4. Rosenberg B., Vancamp L., Krigas T. // Nature. 1965. V. 205. № 4972. P. 698.
  5. Connors R. Platinum Coordination Complexes in Cancer Chemotherapy. Springer-Verlag, 1974.
  6. Lippard S.J. Progress in Inorganic Chemistry. John Wiley & Sons, Inc., 1982. V. 29. 401 p.
  7. Yaru Li, Ziru Sun, Yujun Cui et al. // Bioorg. Chem. 2021. V. 107. Art. 104636.
  8. Vikse K.L., McIndoe J.S. // Pure Appl. Chem. 2015. V. 87. № 4. P. 361.
  9. Markov A.A., Yakushev I.A., Churakov A.V. et al. // Dokl. Phys. Chem. 2016. V. 468. № 1. P. 72.
  10. Radlik, M., Śrębowata, A., Juszczyk, W. et al. // Adsorption. 2019. V. 25. № 4. P. 843.
  11. Vana J., Bartacek J., Hanusek J. et al. // J. Org. Chem. 2019. V. 84. № 20. P. 12746.
  12. Stephenson T.A., Morehouse S.M., Powell A.R et al. // J. Chem. Soc. (Resumed). 1965. P. 3632.
  13. Skapski A.C., Smart M.L. // J. Chem. Soc. D. 1970. № 11. P. 658.
  14. Carrondo M.A.A.F. de C.T., Skapski A.C. // Chem. Commun. 1976. № 11. P. 410.
  15. Carrondo M.A.A.F. de C.T., Skapski A.C. // Acta Crystallogr. B. 1978. V. 34. P. 1857.
  16. Markov A.A., Yakushev I.A., Churakov A.V. et al. // Mendeleev Commun. 2019. V. 29. № 5. P. 489.
  17. Cherkashina N.V., Kochubey D.I., Kanazhevskiy V.V. // Inorg. Chem. 2014. V. 53. № 16. P. 8397.
  18. Cherkashina N.V., Churakov A.V., Yakushev I.A. et al. // Russ. J. Coord. Chem. 2019. V. 45. № 4. P. 253. https://doi.org/10.1134/S107032841904002X
  19. Yakushev I.A., Stolarov I.P., Cherkashina N.V. et al. // Inorg. Chim. Acta. 2020. V. 508. P. 119631.
  20. Stolarov I.P., Cherkashina N.V., Yakushev I.A. et al. // Russ. J. Inorg. Chem. 2020. V. 65. P. 507. https://doi.org/10.1134/S003602362004021X
  21. Cherkashina N.V., Nefedov S.E., Uvarova M.A. et al. // Russ. J. Inorg. Chem. 2014. V. 59. № 5. P. 446. https://doi.org/10.1134/S0036023614050076
  22. Perrin D.D., Armarego W.L.F. Purification of Laboratory Chemicals. Oxford: Pergamon, 1988. 544 p.
  23. Kauffman G.B. // Inorg. Synth. 1961. V. 7. P. 249.
  24. Svetogorov R.D., Dorovatovskii P.V., Lazarenko V.A. // Cryst. Res. Technol. 2020. V. 55. P. 1900184.
  25. Kabsch W. // Acta Crystallogr. D. 2010. V. 66. P. 125.
  26. APEX3, SAINT and SADABS. Madison (WI, USA): Bruker AXS Inc., 2016.
  27. Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. P. 3.
  28. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3.
  29. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. A-ppl. Cryst. 2009. V. 42. P. 339.
  30. Carroll J., Gagnier J.P., Garner A.W. et al. // Organometallics. 2013. V. 32. № 17. P. 4828.
  31. Baddour F.G., Fiedler S.R., Shores M.P. et al. // Inorg. Chem. 2013. V. 52. № 9 . P. 4926.
  32. Umakoshi K., Kojima T., Saito K. et al. // Inorg. Chem. 2008. V. 47. № 12. P. 5033.
  33. Cherkashina N.V., Kozitsyna N.Y., Aleksandrov G.G. et al. // Mendeleev Commun. 2002. V. 12. № 2. P. 49.
  34. Gérbéléu N.V., Timko G.A., Indrichan K.M., Popovich G.A. // Theor. Exp. Chem. 1986. V. 22. № 3. P. 304.
  35. Wei C.H., Hingerty B.E., Busing W.R. // Acta Crysrtallog. C. 1989. V. 45. № 17. P. 26.
  36. Batsanov S.S. // Inorg. Mater. 2001. V. 37. № 9. P. 871.
  37. Lewis N.A., Pakhomova S., Marzilli P.A., Marzilli L.G. // Inorg. Chem. 2017. V. 56. № 16. P. 9781.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (488KB)
3.

下载 (703KB)
4.

下载 (496KB)
5.

下载 (451KB)
6.

下载 (776KB)
7.

下载 (457KB)
8.

下载 (443KB)

版权所有 © И.А. Якушев, М.Ю. Нестеренко, П.В. Дороватовский, А.Б. Корнев, А.Д. Максимова, А.С. Попова, Н.В. Черкашина, А.В. Чураков, М.Н. Варгафтик, 2022