Ультранизкоплавкие соединения полифосфата аммония

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

При взаимодействии низкомолекулярного полифосфата аммония с полиэтиленполиамином получены термопластичные полимеры, содержащие фракции с температурами стеклования Тстекл. ≥ –95°С. Измерены их термо- и теплостойкость, влагоустойчивость при влажности 40–50%. Предложены структура и химическая схема образования продуктов взаимодействия.

全文:

受限制的访问

作者简介

А. Шаулов

Федеральный исследовательский центр химической физики им. Н. Н. Семенова РАН

编辑信件的主要联系方式.
Email: ajushaulov@yandex.ru
俄罗斯联邦, Москва

А. Грачев

Федеральный исследовательский центр химической физики им. Н. Н. Семенова РАН

Email: ajushaulov@yandex.ru
俄罗斯联邦, Москва

Н. Авраменко

Федеральный исследовательский центр химической физики им. Н. Н. Семенова РАН

Email: ajushaulov@yandex.ru
俄罗斯联邦, Москва

В. Бычков

Федеральный исследовательский центр химической физики им. Н. Н. Семенова РАН

Email: ajushaulov@yandex.ru
俄罗斯联邦, Москва

А. Любимов

Федеральный исследовательский центр химической физики им. Н. Н. Семенова РАН

Email: ajushaulov@yandex.ru
俄罗斯联邦, Москва

А. Берлин

Федеральный исследовательский центр химической физики им. Н. Н. Семенова РАН

Email: ajushaulov@yandex.ru
俄罗斯联邦, Москва

参考

  1. Продан Е. А., Продан Л. И., Ермоленко H. Ф. Триполифосфаты и их применение // Минск. Наука и техника. 1969. С. 5–49.
  2. Кубасова Л. В. Полифосфорные кислоты и их аммонийные соли // Успехи химии. 1971. Т. 40. № 1. С. 3–23.
  3. Ненахов С. А., Пименова В. П. Физикохимия вспенивающихся огнезащитных покрытий на основе полифосфата аммония: Обзор литературы // Пожаровзрывобезопасность. 2010. Т. 19. № 8. С. 11–57.
  4. Копейкин В. А., Петрова А. П., Рашкован И. Л. Материалы на основе металлофосфатов // М.: Химия, 1976. С. 200.
  5. Судакас Л. Г. Фосфатные вяжущие системы // СПб.: РИА «Квинтет», 2008. С. 260.
  6. Urman К., Otaigbe J. U. New phosphate glass/polymer hybrids. Current status and future prospects // Prog. Polym. Sci. 2007. Т. 32. С. 1462–1498.
  7. Шаулов А. Ю., Владимиров Л. В., Грачев А. В., Лалаян В. М., Нечволодова Е. М., Сакович Р. А., Стегно Е. В., Ткаченко Л. А., Патлажан С. А., Берлин А. А. Неорганические и гибридные полимеры и композиты // Химическая физика. Т. 39. № 1. 2020. С. 75–82.
  8. Стегно Е. В., Лалаян В. М., Грачев А. В., Владимиров Л. В., Нелюб В. А., Шаулов А. Ю., Берлин А. А. Свойства гибридных смесей полиоксида бора и сополимера этилена с винилацетатом // Все материалы. Энциклопедический справочник. 2018. № 5. С. 2.
  9. Shaulov A., Addiego F., Federic C. E., Stegno E., Grachev A., Patlazhan S. Heat-resistant polymer composites based on ethylene tetrafluoroethilene mixed with inorganic polyoxides // Materials. 2021. T. 14. № 4. С. 1–15.
  10. Шаулов А. Ю., Владимиров Л. В., Авраменко Н. В., Грачев А. В., Парфенова А. М. Низкотемпературная фосфатная композиция // Известия Академии наук. Серия химическая. 2022. № 10. С. 2103–2107.
  11. Сакович Р. А., Шаулов А. Ю., Нечволодова Е. М., Ткаченко Л. А. Энергия внутримолекулярных взаимодействий и структура поликомплексов металлофосфатов с молекулами воды и азотсодержащими соединениями // Химическая физика. 2020. Т. 39. № 5. С. 78–83.
  12. Нечволодова Е. М., Сакович Р. А., Грачев А. В., Глаголев Н. Н., Мотякин М. В., Шаулов А. Ю., Берлин А. А. Поликомплексы продуктов поликонденсации борной кислоты и п-фенилендиамина // Химическая физика. 2017. Т. 36. № 5. С. 82–86.
  13. Нечволодова Е. М., Сакович Р. А., Шаулов А. Ю., Грачев А. В., Владимиров Л. В., Ткаченко Л. А., Шашкин Д. П., Берлин А. А. Гибридные комплексные полимеры гидроксида бора и имидазола // Химическая физика. 2017. Т. 36. № 9. С. 66–73.
  14. Xia W., Wulan Z., Hongyan Z., Dan L., Hongjing T., Xiude H., Qian W., Chunling X., Xiaoyu C., Wenjing L. The Dynamic CO2 Adsorption of Polyethylene Polyamine-loaded MCM-41 before and after Methoxypolyethylene Glycol codispersion // RSC Adv. 2019. Т. 9. С. 27050–27059.
  15. Yan L., Leijie Q., Yifan L., Junjie Q., Maotao W., Xinyue L., Shasha L. Recent Advances in Halogen-Free Flame Retardants for Polyolefin Cable Sheath Materials // Polymers 2022. Т. 14. № 14. С. 2876–2894.
  16. Jager H., Heyns A. M. Kinetics of Acid-catalyzed Hydrolysis of a Polyphosphate in Water // J. Phys. Chem. A. 1998. № 102. Р. 2838–2841.
  17. Rulliere C., Perenes L., Senocq D., Dodi A., Marchesseau S. Heat Treatment Effect on Polyphosphate Chain Length in Aqueous and Calcium Solutions // Food Chem. 2012. № 134. Р. 712–716.

补充文件

附件文件
动作
1. JATS XML
2. Scheme 1

下载 (32KB)
3. Fig. 1. Mass loss (1) and thermal effects (2) during heating of ammonium polyphosphate (the dotted line represents the derivative of mass loss)

下载 (96KB)
4. Fig. 2. Differential curve of PFA mass drop (1) and current intensity at ion mass values corresponding to: NH3 (2), H2O (3), NO (4), CO2 (5), CO (6)

下载 (127KB)
5. Fig. 3. Thermomechanical curves obtained before and after heat treatment of PFA at 150°C, 1 h

下载 (95KB)
6. Fig. 4. Absorption spectra of aqueous solutions of PPA, PEPA, phosphoric acid and their mixtures. PEPA (1), phosphoric acid (2), PPA (3), phosphoric acid / PEPA (4), PPA / PEPA (5)

下载 (89KB)
7. Fig. 5. Thermomechanical properties of PFA (1) and reaction products of PFA/PEPA = 1/0.1 wt% (2) and PFA/PEPA = 1/0.2 wt% (3) mixtures (150°C, 1 h)

下载 (77KB)
8. Fig. 6. DSC curves of low-temperature fractions of interaction products of PFA/PEPA = 1/0.2 wt% compositions (106°C, 1 h) (a) and PFA/PEPA = 1/0.2 wt% (150°C, 1 h) (b)

下载 (69KB)
9. Fig. 7. Temperature dependence of Trasm (1) and Ttekuch (2) of PPA/PEPA = 1/0.3 wt% composition

下载 (61KB)
10. Fig. 8. Mass loss of PPA, PEPA and PPA/PEPA mixtures. DSC of PEPA (1), DSC of PPA (2), DSC of PPA / PEPA = 1/0.3 wt% (150°C, 1 h) (3), PPA / PEPA = 1/0.3 wt% (150°C, 1 h) (4), PFA (5)

下载 (93KB)
11. Fig. 9. Tensile behaviour of PPA/0.3 wt% PEPA composite (120°C, 1 h) at different strain rates: 1-1 mm/min, 2-10 mm/min

下载 (63KB)

版权所有 © Russian Academy of Sciences, 2024