Ignition and combustion of pyrophoric iron particles during free fall in air

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

The ignition and combustion of aggregates of pyrophoric iron nanoparticles and their combination during their free fall in the air atmosphere was studied using the method of video recording of motion tracks. The composition and microstructure of combustion products were determined. The possibility of heating iron nanoparticles to the ignition temperature at the stage of oxygen chemisorption on their surface was estimated.

Авторлар туралы

S. Vadchenko

Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences

Email: vadchenko@ism.ac.ru
Moscow, Russia

M. Alymov

Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: vadchenko@ism.ac.ru
Moscow, Russia

Әдебиет тізімі

  1. Sergeev G.B. // Russ. Chem. Rev. 2001. V. 70. № 10. P. 809. https://doi.org/10.1070/RC2001v070n10ABEH000671
  2. Huber D.L. // Small. 2005. V. 1. Issue 5. P. 482. https://doi.org/10.1002/smll.200500006
  3. Gromov A.A., Teipel U. Metal Nanopowders: Production, Characterization, and Energetic Applications. N.Y.: John Wiley & Sons, 2014. P. 417. https://doi.org/10.1002/9783527680696
  4. Zarko V.E., Gromov A.A. Energetic Nanomaterials: Synthesis, Characterization, and Application. 1st edition. Publisher: Elsevier, 2016. ISBN: 9780128027103
  5. Berner M.K., Zarko V.E., Talawar M.B. Combust Explos Shock Waves. 2013. V. 49. P. 625. https://doi.org/10.1134/S0010508213060014
  6. Zarko V., Glazunov A. // Nanomaterials. 2020. V. 10(10), 2008. https://doi.org/10.3390/nano10102008
  7. Bouillard J., Vignes A., Dufaud O. et al. // J. Hazard. Mater. 2010. V. 181. № 1–3. P. 873. https://doi.org/10.1016/j.jhazmat.2010.05.094
  8. Sundaram D., Yang V., Zarko V.E. // Combustion, Explosion and Shock Waves. 2015. V. 51. № 2. P. 173. https://doi.org/10.1134/S0010508215020045
  9. Hu Z., Boiadjiev V., Thundat T. // Energy Fuels. 2005. V. 19. № 3. 855. https://doi.org/10.1021/ef0496754
  10. Alymov M.I., Vadchenko S.G., Seplyarskii B.S. et al. // Doklady Chemistry. 2020. V. 495. P. 182. https://doi.org/10.1134/S0012500820110014
  11. Alymov M.I., Seplyarskii B.S., Vadchenko S.G. et al.// Russ. J. Phys. Chem. B. 2021. V. 15. №. 2. P. 352. https://doi.org/10.1134/S1990793121020135
  12. Haneda K., Morrish A. // Nature. 1979. V. 282. P. 186.https://doi.org/10.1038/282186a0
  13. Sokolov I., Sharafoutdinov R. // Nuclear and Radiation Safety J. 2018. № 2. P. 1 (in Russian).
  14. Sokolov I.P. // Ibid. 2016. № 1. P. 1 (in Russian).
  15. Mi X., Fujinawa A., Bergthorson J. M. // Combust. and Flame. 2022. V. 240. 112011. https://doi.org/10.1016/j.combustflame.2022.112011
  16. Korshunov A.V.// Bulletin of the Tomsk Polytechnic University. 2011. V. 318. № 3. P. 5 (in Russian).
  17. Gorokhov Y.M. // Soviet Powder Metall. Metal Ceramic. 1964. V. 3. № 1. P. 82. https://doi.org/10.1007/BF00774331
  18. Panahi A., Chang D., Schiemann M. et al. // Appl. Energy Combust. Sci. 2023. V. 13. 100097. https://doi.org/10.1016/j.jaecs.2022.100097
  19. Krietsch A., Scheid M., Schmidt M., Krause U. // J. Loss Prevention Proc. Industries. 2015. V. 36. P. 237. https://doi.org/10.1016/j.jlp.2015.03.016
  20. Korshunov A.V. // Russ. J. Phys. Chem. B. 2012. V. 6. № 3. P. 368. https://doi.org/10.1134/S1990793112050053
  21. Ivanov V.G., Gavrilyuk O.V. // Combust. Explos. Shock Waves. 1999. V. 35. P. 648. https://doi.org/10.1007/BF02674538
  22. Leshchevich V.V., Penyazkov O.G., Fedorov A.V. et al. // J. Eng. Phys. Thermophys. 2012. V. 85. № 1. P. 148. https://doi.org/10.1007/s10891- 012- 0632- y
  23. Schlöffel G., Eichhorn A., Albers H. et al. // Combust. and Flame. 2010. V. 157. № 3. P. 446. https://doi.org/10.1016/j.combustflame.2009.12.001
  24. Song Q., Cao W., Wei X. et al. // Ibid. 2021. V. 230. 111420. https://doi.org/10.1016/j.combustflame.2021.111420
  25. Ning D., Shoshin Y., J.A. van Oijen et al. // Ibid. 2021. V. 230. P.111424. https://doi.org/10.1016/j.combustflame.2021.111424
  26. Belousova N.S., Glotov O.G., Guskov A.V. // J. Phys.: Conf. Ser. 2019. 1214 012010. https://doi.org/10.1088/1742-6596/1214/1/012010
  27. Glotov O.G. // Uspekhi Fizicheskikh Nauk. 2019. V. 189. № 2. P. 135. https://doi.org/10.3367/UFNr.2018.04.038349
  28. Vignes A., Krietsch A., Dufaud O. et al. // J. Hazard. Mater. 2019. V. 379. № 5. 120767. https://doi.org/10.1016/j.jhazmat.2019.120767
  29. Wang C.M., Baer D.R., Thomas L.E. et al. // J. Appl. Phys. 2005. V. 98. 094308. https://doi.org/10.1063/1.2130890
  30. Alymov M.I., Seplyarskii B.S., Vadchenko S.G. et al. // Mendeleev Commun., 2020. V. 30. P. 380. https://doi.org/10.1016/j.mencom.2020.05.040
  31. Alymov M. I., Seplyarskii B. S., Vadchenko S. G. et al. // Engineering Phys. 2019. № 10. P. 14 (in Russian). http://dx.doi.org/10.25791/infizik.10.2019.915
  32. Alymov M.I., Rubtsov N.M., Seplyarskii B.S. et al. // Mendeleev Communications. 2017. V.27. № 5. P. 482. https://doi.org/10.1016/j.mencom.2017.09.017
  33. Logachev I.N., Logachev K.I. Aerodynamic principles of aspiration. St. Petersburg: Khimizdat. 2005 (in Russian).
  34. Arkhipov V.A., Usanina A.S. Movement of aerosol particles in a flow: study guide. Tomsk: Publishing House of Tomsk State University, 2013. Tomsk: Izd. Tomsk. Univ., 2013(in Russian). http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000463973
  35. Shishkin A.S., Shishkin S.F. Examples of calculations of aerodynamic processes for processing bulk materials in EXCEL.Ekaterinburg: Information portal of UrFU (in Russian). http://study.urfu.ru 2015
  36. Yagodnikov D.A. Combustion of Powder Metals in Gas-Dispersion Systems Moscow: Izd. Mosk. Gos. Tekh. Univ. Baumana, 2018 (in Russian).
  37. Tang F.D., Goroshin S., Higgins A.J. // Proc. Combust. Inst. 2011. V. 33. № 2. P. 1975. https://doi.org/10.1016/j.proci.2010.06.088.
  38. Hazenberg T., J.A. van Oijen // Ibid. 2021. V. 38. № 3. P. 4383. https://doi.org/10.1016/j.proci.2020.07.058
  39. Arkhipov V.A., Usanina A.S. // J. Eng. Phys. Thermophy. 2017. V. 90. P. 1061 (in Russian). https://doi.org/10.1007/s10891-017-1657-z
  40. Chernavskii P.A., Pankina G.V., Zaikovskii V.I. et al. //Russian Journal of Physical Chemistry A. 2008. V. 82. № 4. P. 690. https://doi.org/10.1134/S0036024408040341
  41. Païdassi J. // Acta Metallurgica. 1958. V. 6. № 3. P. 184. https://doi.org/10.1016/0001-6160(58)90006-3.
  42. Boggs W.E., Kachik R.H., Pellissier G.E. // J. Electrochem. Soc. 1967. V. 114. № 1. P. 32. https://doi.org/10.1149/1.2426502
  43. Fung K.K., Qin B., Zhang X.X. // Mater. Sci. Eng., A. 2000. V. 286. № 1. P. 135. https://doi.org/10.1016/S0921-5093(00)00717-6
  44. Encyclopedia.Pyrophoricity. P. 64 (in Russian). https://pozhproekt.ru
  45. Soo M., Mi X., Goroshin S. et al. // Combust. Flame. 2018. V. 192. P. 384. https://doi.org/10.1016/j.combustflame.2018.01.032
  46. Zemsky G.T., Kondratyuk N.V. // Fire safety. 2019. № 3. P. 104 (in Russian).
  47. Allen D., Glumac, N., Krier H. // Combust. Flame. 2014. V. 161. P. 295. https://doi.org/10.1016/j.combustflame.2013.07.010
  48. Sundaram D.S., Puri P., Yang V. // Ibid. 2013. V. 160. № 9. P. 1870. https://doi.org/10.1016/j.combustflame.2013.03.031
  49. Seplyarsky B.S., Ivleva T.P. and Alymov M.I. // Nanotechnol. in Russia. 2017. V. 12. № 11–12. P. 583 (in Russian). https://doi.org/10.1134/S1995078017060088
  50. Seplyarskii, B.S., Ivleva, T.P., Alymov, M.I. // Dokl. Phys. Chem. 2018. V. 478. P. 23. https://doi.org/10.1134/S0012501618010062
  51. Altman I.S. // J. Aerosol Sci. 1999. V. 30. № 1. P. S423. https://doi.org/10.1016/S0021-8502(99)80223-7
  52. Altman I.S. // J. Phys. Studies. 1999. V. 3. № 4. P. 456. https://doi.org/10.30970/jps.03.456
  53. Glassman I., Papas P., Brezinsky K. // Combust. Sci. Tech. 1992. V. 83. P. 161. https://doi.org/10.1080/00102209208951829
  54. Sun J.H., Dobashi R., Hirano T. // Ibid. 2000. V. 150. № 1–6. P. 99. https://doi.org/10.1080/00102200008952119
  55. Mugtasimov A.V., Peskov N.V., Pankina G.V. et al. // Russ. J. Phys. Chem.A. 2011. V. 85. P. 217. https://doi.org/10.1134/S0036024411020257
  56. Chernavskii P.A., Pankina G.V., Peskov N.V. et al. // J. Phys. Chem.C. 2007. V. 111. № 15. P. 5576. https://doi.org/10.1021/jp065162h
  57. Chernavskii P.A., Peskov N.V., Mugtasimov A.V., Lunin V.V. // Russ. J. Phys. Chem. B 1. 2007. V. 1. № 4. P. 394. https://doi.org/10.1134/S1990793107040082
  58. Vadchenko S.G., and Alymov M.I. // Russ. J. Phys. Chem. B. 2022. V. 16. № 2. P. 236. https://doi.org/10.1134/S1990793122020130.
  59. Alymov M.I., Seplyarskii B.S., Kochetkov R.A. // Russ. J. Phys. Chem. B. 2023 V. 17. P. 1005. https://doi.org/10.1134/S1990793123040218
  60. Alymov M.I., Rubtsov N.M., Seplyarskii B.S. et al. // Nanotechnol. Russia.2017. V. 12. № 5–6. P. 8 (in Russian). https://doi.org/10.1134/S1995078017030028
  61. Scorchiletti V.V. Theoretical foundations of metal corrosion. Leningrad: Chemistry, 1973 (in Russian).
  62. Kofstad P. High Temperature Oxidation of Metals. Published by. N.Y.: John Wiley and Sons, Inc., 1966.
  63. Alymov M.I., Vadchenko S.G., Suvorova E.V. et al. // Dokl. Phys. Chem. 2019. V. 488. P. 143. https://doi.org/10.1134/S0012501619100014

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2025