Quantum chemical simulation of reactions involved in electrically enhanced reduction of nickel and copper nano-oxides with carbon monoxide
- Autores: Grishin M.V.1, Gatin A.K.1, Sarvadii S.Y.1, Slutskii V.G.1, Kharitonov V.A.1
 - 
							Afiliações: 
							
- Semenov Research Center for Chemical Physics, Russian Academy of Sciences
 
 - Edição: Volume 43, Nº 9 (2024)
 - Páginas: 29-34
 - Seção: Kinetics and mechanism of chemical reactions, catalysis
 - URL: https://rjonco.com/0207-401X/article/view/680963
 - DOI: https://doi.org/10.31857/S0207401X24090037
 - ID: 680963
 
Citar
Texto integral
Resumo
Quantum chemical calculations are performed to determine the heats of reduction with CO of the simplest electrically neutral or electrically charged oxides of nickel (Ni2O2, Ni2O) and copper (Cu2O2, Cu2O). Also calculated are the heats of conversion of neutral or charged copper oxides to active isomers with an O radical. Based on the calculated results, an explanation is proposed for the change in the rates of reduction of nickel and copper nano-oxides with carbon monoxide caused by applying an electrical voltage to the oxides.
Texto integral
Sobre autores
M. Grishin
Semenov Research Center for Chemical Physics, Russian Academy of Sciences
							Autor responsável pela correspondência
							Email: grishin@chph.ras.ru
				                					                																			                												                	Rússia, 							Moscow 119991						
A. Gatin
Semenov Research Center for Chemical Physics, Russian Academy of Sciences
														Email: grishin@chph.ras.ru
				                					                																			                												                	Rússia, 							Moscow 119991						
S. Sarvadii
Semenov Research Center for Chemical Physics, Russian Academy of Sciences
														Email: grishin@chph.ras.ru
				                					                																			                												                	Rússia, 							Moscow 119991						
V. Slutskii
Semenov Research Center for Chemical Physics, Russian Academy of Sciences
														Email: grishin@chph.ras.ru
				                					                																			                												                	Rússia, 							Moscow 119991						
V. Kharitonov
Semenov Research Center for Chemical Physics, Russian Academy of Sciences
														Email: grishin@chph.ras.ru
				                					                																			                												                	Rússia, 							Moscow 119991						
Bibliografia
- M.V. Grishin, A.K. Gatin, V.G. Slutskii, A.S. Fedotov, V.A. Kharitonov, B.R. Shub. Russian Journal of Physical Chemistry B 14(3), 547(2020). https://doi.org/10.1134/S1990793120020050
 - M.V. Grishin, A.K. Gatin, V.G. Slutskii, A.S. Fedotov, V.A. Kharitonov, B.R. Shub. Russian Journal of Physical Chemistry B 15(5), 777(2021). https://doi.org/10.1134/S1990793121050031
 - M.V. Grishin, A.K. Gatin, V.G. Slutskii, A.S. Fedotov, V.A. Kharitonov, B.R. Shub. Russian Journal of Physical Chemistry B 17(1), 49(2023). https://doi.org/10101134/S1990793123010050
 - M.V. Grishin, A.K. Gatin, E.K. Golubev, N.V. Dokhlikova, S.A. Ozerin, S.Yu. Sarvadii, I.G. Stepanov, V.G. Slutskii, V.A. Kharitonov, B.R. Shub. Colloid Journal. 85, 16(2023). https://doi.org/10.1134/S1061933X22600464
 - M.V. Grishin, A.K. Gatin, V.A. Kharitonov, S.A. Ozerin, S.Yu. Sarvadii, B.R. Shub. Russian Journal of Physical Chemistry B 16(2), 211(2022). https://doi.org/10.1134/S199079312232001X
 - T. Ozaki. Phys. Rev. B 67, 155108(2003). https://doi.org/10.1103/PhysRevB.67.155108
 - T. Ozaki, H. Kino. Phys. Rev. B 69, 195113(2004). https://doi.org/10.1103/PhysRevB.69.195113
 - S. Dey, C.C. Dhal, D. Mohan, R. Prasad. Advanced Composites and Hybrid Materials. 2, 626 (2019). https://doi.org/10.1007/s42114-019-00126-3
 - S. Dey, N.S. Metha. Chemical Engineering Journal Advances. 1, 100008(2020). https:/doi.org/10.1016/j.ceja.2020.10008
 
Arquivos suplementares
				
			
						
						
					
						
						
									





