Zeros of the green function for a damped beam and a half-ring

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

For an Euler Bernoulli beam and a thin inextensible half-ring, it is shown that their Green's function for normal forces and displacements can be zero in the presence of dissipative losses. The beam and the half-ring are considered in two versions: with a simple support and movable seal at the ends. Solutions exist in wide frequency bands. For a half-ring with a movable seal, there are solutions for which the frequency derivative of the Green's function is close to zero with a frequency-independent loss tangent. A vibration isolator in the form of a closed ring with four supports arranged at points corresponding to one of these solutions will have both theoretically infinite vibration isolation at one frequency and large vibration isolation in a wide band of neighboring frequencies.

Авторлар туралы

L. Lazarev

Central Aerohydrodynamic Institute (TsAGI)

Хат алмасуға жауапты Автор.
Email: leonidl74@mail.ru
17 Radio Street, 105005 Moscow, Russia

Әдебиет тізімі

  1. Ляпунов В.Т., Никифоров А.С. Виброизоляция в судовых конструкциях. Л.: Судостроение, 1975. 232 с.
  2. Клюкин И.И. Об ослаблении волн изгиба в стержнях и пластинах при помощи резонансных колебательных систем // Акуст. журн. 1960. Т. 6. № 2. С. 213–219.
  3. Лапин А.Д. Поглощение изгибных волн парой цепочек механических резонаторов, установленных на пластине // Акуст. журн. 2014. Т. 60. № 3. С. 227–229.
  4. Cha F.D., Chen C.-Y. Quenching vibration along a harmonically excited linear structure using lumped masses // J. Vibr. Control. 2011. V. 17. № 4. P. 527–539. https://doi.org/10.1177/1077546310362448
  5. Foda M.A., Alsaif K. Vibration suppression of a beam structure by intermediate masses and springs // J. Vibr. Control. 2002. V. 256. № 4. P. 629–645. https://doi.org/10.1006/jsvi.5012
  6. Patil S.S., Awasare P. Vibration reduction at desired locations on a beam by creating nodes using tunable vibration neutralizers // J. Vibr. Control. 2016. V. 22. № 1. P. 205–233. https://doi.org/10.1177/1077546314528964
  7. Shen Y., Zhou X., Cha P.D. Imposing points of zero displacement and zero slopes on a plate subjected to steady-state harmonic excitation // J. Vibr. Control. 2018. V. 24. № 20. P. 4904–4920. https://doi.org/10.1177/1077546317738616
  8. Cha P.D., Rinker J.M. Enforcing Nodes to Suppress Vibration Along a Harmonically Forced Damped Euler- Bernoulli Beam // ASME J. Vib. Acoust. 2012. V. 134. № 5. P. 051010-1–10. https://doi.org/10.1115/1.4006375
  9. Foda M.A., Alsaif K. Control of lateral vibrations and slopes at desired locations along vibrating beams // J. Vibr. Control. 2009. V. 15. № 11. P. 1649–1678. https://doi.org/10.1177/1077546309103256
  10. Albassam B.A. Vibration control of a flexible beam structure utilizing dynamic Green’s function // J. King Saud University-Engineering Sciences. 2021. V. 33. №. 3. P. 186–200. https://doi.org/10.1016/j.jksues.2020.03.005
  11. Лазарев Л.А. Панели с резонаторами малой добротности, имеющие теоретически бесконечную звукоизолирующую способность на одной частоте // Акуст. журн. 2015. Т. 61. № 4. С. 522–528.
  12. Вибрации в технике: Справочник. В 6-ти т. Ред. совет: Челомей В.Н. (пред.). М.: Машиностроение, 1978. Т. 1. Колебания линейных систем. Под ред. Болотина В.В. 1978. 352 с. ил.
  13. Rao S.S. Vibration of continuous systems. John Wiley & Sons, 2019. https://doi.org/10.1002/9781119424284
  14. Abu-Hilal M. Forced vibration of Euler–Bernoulli beams by means of dynamic Green functions // J. Sound Vib. 2003. V. 267. № 2. P. 191–207.
  15. Chidamparam P., Leissa A.W. Vibration of planar curved beams, rings, and arches // Appl. Mech. Rev. 1993. V. 46. № 9. P. 467–483.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2025