Visualization of Thin Cylindrical Scatterers in Pulse Acoustic Microscopy
- Autores: Morokov E.S.1, Levin V.M.1
-
Afiliações:
- Institute of Biochemical Physics named after. N.M. Emanuel RAS
- Edição: Volume 71, Nº 4 (2025)
- Páginas: 534-543
- Seção: ФИЗИЧЕСКАЯ АКУСТИКА
- URL: https://rjonco.com/0320-7919/article/view/690836
- DOI: https://doi.org/10.31857/S0320791925040047
- EDN: https://elibrary.ru/vpaiqu
- ID: 690836
Citar
Texto integral



Resumo
One of the areas of application of long-focus high-frequency ultrasonic beams is visualization of the volume microstructure of materials. Visualization of the microstructure in acoustic microscopy in the reflection mode is provided by recording signals during reflection or scattering of the ultrasonic beam on the elements of the internal structure. Some of the elements can be acoustically rigid thin cylindrical scatterers. The radius of thin cylindrical elements is significantly smaller than the size of the focal spot of the probing beam, therefore, all thin elements of small diameter are displayed in acoustic images with the same size equal to the diameter of the focal spot. To estimate the sizes of thin cylindrical elements visible in the images, a theoretical approach is proposed that describes the formation of the amplitudes of output signals during the interaction of a focused ultrasonic beam with thin cylindrical elements of the structure. The analytical description of the interaction takes into account the radius of the element and the sensitivity of the receiving acoustic system. Taking into account the parameters of the emitter/receiver and the geometry of the cylinder, the inverse problem of estimating the scatterer size depending on the received signal is solved. The theoretical approach is experimentally confirmed by visualization of thin polymer fibers using a scanning pulse acoustic microscope and acoustic lenses at frequencies of 50 and 200 MHz, forming focused beams of different geometries. Based on the results of comparison of experimental data and theoretical calculations, a conclusion is made about the applicability of the described analytical approach within the framework of assumptions and approximations for long-focus beams with a small-angle aperture when estimating the minimum dimensions of cylindrical scatterers visible in acoustic microscopy.
Palavras-chave
Sobre autores
E. Morokov
Institute of Biochemical Physics named after. N.M. Emanuel RAS
Email: es_morokov@yahoo.com
st. Kosygina 4, Moscow, 119334 Russia
V. Levin
Institute of Biochemical Physics named after. N.M. Emanuel RAS
Autor responsável pela correspondência
Email: es_morokov@yahoo.com
st. Kosygina 4, Moscow, 119334 Russia
Bibliografia
- Faran J.J. Sound Scattering by Solid Cylinders and Spheres // J. Acoust. Soc. Am. 1951. V. 23. P. 405–418.
- Лямшев Л.М. К теории рассеяния звука тонким стержнем // Акуст. журн. 1956. Т. 2. № 4.C. 358–365.
- Андреева И.Б., Самоволькин В.Г. Рассеяние звука упругими цилиндрами конечной длины // Акуст. журн. 1976. Т. 22. № 5. С. 637–643.
- Stanton T.K. Sound scattering by cylinders of finite length. II. Elastic cylinders // J. Acoust. Soc. Am. 1988. V. 83. P. 64–67.
- Лямшев Л.М. Дифракция звука на безграничной тонкой упругой цилиндрической оболочке // Акуст. журн. 1958. Т. 4. № 2. C. 161-167.
- Векслер Н.Д., Дюбюс Б., Лави А. Рассеяние акустической волны эллипсоидальной оболочкой // Акуст. журн. 1999. Т. 45. № 1. С. 53–58.
- Flax L., Varadan V.K., Varadan V.V. Scattering of an obliquely incident acoustic wave by an infinite cylinder // J. Acoust. Soc. Am. 1980. V. 68. P. 1832–1835.
- Li T., Ueda M. Sound scattering of a plane wave obliquely incident on a cylinder // J. Acoust. Soc. Am. 1989. V. 86. P. 2363–2368.
- Kari M., Honarvar F. Characterization of immersed transversely isotropic rods by inversion of acoustic scattering data. // J. Acoust. Soc. Am. 2015. V. 138. P. 2024–2033.
- Lewis T.S., Kraft D.W., Hom N. Scattering of elastic waves by a cylindrical cavity in a solid // J. Appl. Phys. 1976. V. 47. P. 1795–1798.
- Kim Y., Lee B., Ih J.-G. Scattering of longitudinal waves by a cylindrical cavity in an attenuating solid // J. Acoust. Soc. Am. 1993. V. 93. P. 93–101.
- Mitri F.G. Scattering of Airy elastic sheets by a cylindrical cavity in a solid // Ultrasonics. 2017. V. 81. P. 100–106.
- Борн М., Вольф Э. Основы оптики. М.: Наука, 1970. 852 с.
- Каневский И.Н. Фокусирование звуковых и ультразвуковых волн. М.: Наука, 1977. 336 с.
- Khramtsova E., Morokov E., Antipova С., Krasheninnikov S., Lukanina K., Grigoriev T. How the Nonwoven Polymer Volume Microstructure Is Transformed under Tension in an Aqueous Environment // Polymers. 2022. V. 14(17). 3526.
- Morokov E., Titov S., Levin V. In situ high-resolution ultrasonic visualization of damage evolution in the volume of quasi-isotropic CFRP laminates under tension // Composites Part B. 2022. V. 247. 110360.
- Мороков Е.С., Левин В.М. Пространственное разрешение акустической микроскопии при визуализации границ раздела в объеме твердого материала // Акуст. журн. 2019. Т. 65. С. 190–196.
Arquivos suplementares
