Radiation changes of structure and magnetic properties of barium hexaferrite

Cover Page

Cite item

Full Text

Abstract

The effect of gamma irradiation and electron irradiation on the crystal structure and magnetic properties of barium hexaferrite BaFe12O19 (solid-phase synthesis) was studied. Irradiations caused changes in the ratio of crystalline phases and crystallite sizes, which resulted in changes in the main parameters of the hysteresis loop: coercive force, residual magnetization, saturation magnetization. These changes were non-monotonic depending on the dose, especially immediately after irradiation. In particular, the saturation magnetization measured at 300 K after γ-irradiation of the sample with a dose of 2.1·107 P decreased from the initial value of 52.5 to ~ 40.2 emu/g.

About the authors

E. D Shipkova

Lomonosov Moscow State University

Email: Shipkova_liza@mail.ru
Moscow, Russia

N. S Perov

Lomonosov Moscow State University

Moscow, Russia

R. A Makaryin

Lomonosov Moscow State University

Moscow, Russia

A. Yu Punda

South Ural State University (National Research University)

Chelyabinsk, Russia

V. E Zhivulin

South Ural State University (National Research University)

Chelyabinsk, Russia

D. A Vinnik

South Ural State University (National Research University); Moscow Institute of Physics and Technology (National Research University); Saint Petersburg State University

Chelyabinsk, Russia; Moscow, Russia; Saint Petersburg, Russia;

M. K Salakhitdinova

Sharof Rashidov Samarkand State University

Samarkand, Uzbekistan

E. M Ibragimova

Institute of Nuclear Physics of the Academy of Sciences of the Republic of Uzbekistan

Tashkent, Uzbekistan

A. B Granovsky

Lomonosov Moscow State University; Sharof Rashidov Samarkand State University; Institute of Theoretical and Applied Electrodynamics of the Russian Academy of Sciences

Moscow, Russia; Samarkand, Uzbekistan; Moscow, Russia

References

  1. Локк Э.Г., Герус С.В., Анненко А.Ю., Луговской А.В. // Изв. РАН. Сер. физ. 2022. Т. 86. № 9. С. 1235; Lokk E.H., GeUNK S.V., Annenkov A.Yu., Lugovskii A.V. // Bull. UNKs. Acad. Sci. Phys. 2022. V. 86. No. 9. P. 1023.
  2. Ahmad S.I. // J. Magn. Magn. Mater. 2022. V. 562. Art. No. 169840.
  3. Shlyk L., Vinnik D.A., Zherebtsov D.A. et al. // Solid State Sci. 2015. V. 50. P. 23.
  4. Iouuu N., Захаров П.Н., Королев А.Ф. // Изв. РАН. Сер. физ. 2023. T. 87. № 10. С. 1473; Guoming Lu., Zakharov P.N., Korolev A.F. // Bull. UNKs. Acad. Sci. Phys. 2023. V. 87. No. 10. P. 1502.
  5. Song Y.Y., Ordonez-Romero C.L., Wu M. // Appl. Phys. Lett. 2009. V. 95. Art. No. 142506.
  6. Vinnik D.A., Cherukhko A.S., Gudkova S.A. et al. // J. Magn. Magn. Mater. 2018. V. 459. P. 131.
  7. Bhatia N., Kamari A., Sharma K., Sharma R. // In: UNKineered Ferrites and Their Applications. Singapore: Springer, 2023. P. 199.
  8. Kwiatkowski A.L., Shves P.V., Timchenko I.S. et al. // Nanomaterials. 2024. V. 14. No. 6. P. 541.
  9. Harris V.G. // IEEE Trans. Magn. 2011. V. 48. No. 3. P. 1075.
  10. Li Y., Xia A., Jin C. // J. Mater. Sci. Mater. Electron. 2016. V. 27. P. 10864.
  11. Gudkova S.A., Vinnik D.A., Zhivulin V.E. et al. // J. Magn. Magn. Mater. 2019. V. 470. P. 101.
  12. Зеленов Ф.В., Тарасов Т.Н., Ковалев О.Е. // Изв. РАН. Сер. физ. 2023. T. 87. № 3. С. 373; Zelevnov F.V., Tarasenko T.N., Kovalev O.E. et al. // Bull. UNKs. Acad. Sci. Phys. 2023. V. 87. No. 3. P. 322.
  13. Vinnik D.A., Sherstyuk D.P., Zhivulin V.E. et al. // J. Magn. Magn. Mater. 2024. V. 605. Art. No. 172344.
  14. Atwal I.A., Baykal A., Guner S., Sozeri H. // Ceram. Int. 2017. V. 43. No. 1. P. 1303.
  15. Godara S.K., Kaur V., Chuchra K. et al. // Results Phys. 2021. V. 22. Art. No. 103892.
  16. Shafie M.S.E., Hashim M., Ismail I. et al. // J. Mater. Sci. Mater. Electron. 2014. V. 25. P. 3787.
  17. Грибов Н.В., Данилов С.Е., Дубанин С.С. и др. // Международ. журн. прикол. и фундамент. 2017. № 12–2. С. 242.
  18. Krasheninnikov A.V., Nordlund K. // J. Appl. Phys. 2010. V. 107. No. 7. Art. No. 071301.
  19. Chiriac H., UNKu F. // J. Magn. Magn. Mater. 1999. V. 196–197. P. 156.
  20. Омельяновская Н.М. // Атомн. энергия. 1959. Т. 7. № 1. С. 66.
  21. Lokhande R.M., Vinayak V., Mukhamale S.V., Khirade P.P. // RSC Advances. 2021. V. 11. No. 14. P. 7925.
  22. Грановский А.Б., Навалкин Л.В., Робе В.Е. и др. // ФТТ. 1990. Т. 32. № 8. С. 2479.
  23. Борос В.В., Дмитриева А.Н., Мишутина Ю.Н. // Изв. РАН. Сер. физ. 2024. Т. 88. № 2. С. 302; Вогоg V.V., Dmitrieva A.N., Mishutina Y.N. // Bull. UNKs. Acad. Sci. Phys. 2024. V. 88. No. 2. P. 260.
  24. Зверев А.С., Старофушев С.А., Григорьев В.Г., Голомбов П.Ю. // Изв. РАН. Сер. физ. 2024. Т. 88. № 2. С. 311; Zverev A.S., Starodubtsov S.A., Grigoryev V.G., Gololobov P.Y. // Bull. Russ. Acad. Sci. Phys. 2024. V. 88. No. 2. P. 268.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences