The computational model validating of target sputtering in a miniature linear accelerator

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We presented the results of an experimental study and numerical simulation of the ion beam current distribution on the target of a collapsible miniature linear accelerator. The comparison of the experimental results with the simulation results is carried out. It is shown that the computational model makes it possible to estimate the effect of an ion beam on target sputtering in a miniature linear accelerator.

Texto integral

Acesso é fechado

Sobre autores

I. Mamedov

Dukhov Automatics Research Institute; National Research Nuclear University MEPhi (Moscow Engineering Physics Institute)

Autor responsável pela correspondência
Email: schildkrote5552@yandex.ru
Rússia, Moscow, 127055; Moscow, 115522

I. Kanshin

Dukhov Automatics Research Institute

Email: schildkrote5552@yandex.ru
Rússia, Moscow, 127055

M. Lobov

Dukhov Automatics Research Institute

Email: schildkrote5552@yandex.ru
Rússia, Moscow, 127055

N. Mamedov

Dukhov Automatics Research Institute; National Research Nuclear University MEPhi (Moscow Engineering Physics Institute)

Email: schildkrote5552@yandex.ru
Rússia, Moscow, 127055; Moscow, 115522

Bibliografia

  1. Valkovic V. 14 MeV neutrons. Physics and applications. London, New York: CRC Press Taylor&Francis Group, 2016. 500 р.
  2. http://www.vniia.ru/production/incl/prospekt_element.pdf.
  3. Дашков И.Д., Федоров Н.А., Грозданов Д.Н. и др. // Изв. РАН. Сер. физ. 2021. Т. 85. № 10. С. 1436; Dashkov I.D., Fedorov N.A., Grozdanov D.N. et al. // Bull. Russ. Acad. Sci. Phys. 2021. V. 85. No. 10. P. 1113.
  4. http://escholarship.org/uc/item/9vn757hp.
  5. Kanshin I.A., Mamedov N.V., Solodovnikov A.A. et al. / Vacuum. 2022. V. 202. Art. No. 111194.
  6. Sy A., Ji Q. // AIP Conf. Proc. 2011. V. 1336. P. 533.
  7. Мамедов Н.В., Прохорович Д.Е., Юрков Д.И. и др. // ПТЭ. 2018. Т. 61. № 4. С. 62; Mamedov N.V., Prokhorovich D.E., Yurkov D.I. et al. // Instrum. Exp. Tech. 2018. V. 61. No. 4. P. 530.
  8. Mamedov N.V., Prokhorovich D.E., Kanshin I.A. et al. // AIP Conf. Proc. 2018. V. 2011. Art. No. 080006.
  9. Coupland J.R., Green T.S., Hammond D.P., Riviere A.C. // Rev. Sci. Instrum. 1973. V. 44. P. 1258.
  10. Беграмбеков Л.Б., Довганюк С.С., Евсин А.У. и др. // Изв. РАН. Сер. физ. 2018. Т. 82. № 2. С. 134; Begrambekov L.B., Dovganyuk S.S., Evsin A.U. et al. // Bull. Russ. Acad. Sci. Phys. 2018. V. 82. No. 2. P. 117.
  11. Rashchikov V.I. // Phys. Procedia. 2015. No. 74. P. 97.
  12. Dolgov A.N., Markov V.G., Kanshin I.A. et al. // J. Phys. Conf. Ser. 2016. V. 666. Art. No. 012023.
  13. Каншин А.А., Солодовников A.А. // ПТЭ. 2020. Т. 63. № 3. С. 62; Kanshin A.A., Solodovnikov A.A. // Instrum. Exp. Tech. 2020. V. 63. No. 3. P. 315.
  14. Белых С.Ф., Евтухов Р.Н., Луткова Л.В. и др. // ЖТФ. 1992. Т. 62. № 6. С. 179; Belykh S.F., Evtukhov R.N., Lutkova L.V. et al.// Tech. Phys. 1992. V. 62. No 6. P. 179.
  15. Kanshin I.A. // Proc. EFRE2020. (Tomsk, 2020). P. 474.
  16. Rokhmanenkov A.S., Kuratov S.E. // J. Phys. Conf. Ser. 2019. V. 1250. Art. No. 012036.
  17. Mamedov N.V., Rokhmanenkov A.S., Solodovnikov A.A. // J. Phys. Conf. Ser. 2021. V. 2064. Art. No. 012039.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Simplified three-dimensional model of the IOS with a target: 1 – focusing electrode; 2 – accelerating electrode; 3 – target.

Baixar (57KB)
3. Fig. 2. Three-dimensional model of AI with IOS and target: 1 – AI; 2 – focusing electrode; 3 – accelerating electrode; 4 – target.

Baixar (50KB)
4. Fig. 3. Dependence of the number of argon ions in the discharge chamber on time.

Baixar (88KB)
5. Fig. 4. Distribution of particles in the discharge chamber of the ion source.

Baixar (154KB)
6. Fig. 5. Photographic image of the IOS: 1 – output aperture of the ion source; 2 – aperture of the accelerating electrode. (a) – before the experiment with the illumination on; (b)–(d) – during the experiment with the illumination off and accelerating voltage: (b) 0 kV; (c) –10 kV; (d) –25 kV.

Baixar (73KB)
7. Fig. 6. Image of the target: sprayed surface (a); metallographic image (b).

Baixar (194KB)
8. Fig. 7. Scheme of target erosion.

Baixar (166KB)
9. Fig. 8. Experimental distribution of current density on the target surface.

Baixar (93KB)
10. Fig. 9. Modeling of beam motion in the IOS based on experimentally measured emittance: 1 – output aperture of the focusing electrode; 2 – accelerating electrode. (a) – potential distribution; (b)–(d) – ion trajectories at accelerating voltage: (b) Uуск = 0 kV; (c) Uуск = –10 kV; (d) Uуск = –25 kV.

Baixar (104KB)
11. Fig. 10. Modeling of beam motion in the IOS based on the particle-in-cell method data: 1 – output aperture of the focusing electrode; 2 – accelerating electrode. (a) – potential distribution; (b)–(d) – ion trajectories at accelerating voltage: (b) Uуск = 0 kV; (c) Uуск = –10 kV; (d) Uуск = –25 kV.

Baixar (132KB)
12. Fig. 11. 2D distribution of current density on the target. Uacc = –25 kV.

Baixar (57KB)
13. Fig. 12. Current density distribution on the target surface for emittance simulation.

Baixar (165KB)
14. Fig. 13. 2D distribution of current density on the target over time. Uacc = –25 kV, Ustor = +2 kV.

Baixar (102KB)
15. Fig. 14. Current distribution on the target for different source operating times.

Baixar (132KB)
16. Fig. 15. Graph of the current distribution envelope on the target.

Baixar (130KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024