Enhancement of magnetoelectric response in composite based on polyvinylidene fluoride and cobalt ferrite suspension due to nanoparticle dispersion

Capa

Citar

Texto integral

Resumo

We presented the results of the study of a nanocomposite of polyvinylidene fluoride and cobalt ferrite nanoparticles coated with oleic acid. It is found that the nanocomposite has low porosity and highly dispersed distribution of nanoparticles in the polymer matrix, due to which it exhibits a strong effect for polymer-based magnetoelectric composites — 24.5 mV/(cm·E). This makes the studied material promising for use in biomedical applications as a scaffold for cell stimulation.

Sobre autores

P. Vorontsov

Immanuel Kant Baltic Federal University

Email: pavoronsov@kantiana.ru
Kaliningrad, Russia

V. Salnikov

Immanuel Kant Baltic Federal University

Kaliningrad, Russia

V. Savin

Immanuel Kant Baltic Federal University

Kaliningrad, Russia

V. Kolesnikova

Immanuel Kant Baltic Federal University

Kaliningrad, Russia

P. Ershov

Immanuel Kant Baltic Federal University

Kaliningrad, Russia

V. Rodionova

Immanuel Kant Baltic Federal University

Kaliningrad, Russia

Bibliografia

  1. Alibakhshi H., Eghhani H., Sharifi E. // Ceram. Int. 2024. V. 50. No. 5. P. 8017.
  2. Суббочев П.В., Орлова А.Г., Турчин И.В. и др. // Изв. РАН. Сер. физ. 2018. T. 82. № 5. C. 572; Subochev P.V., Orlova A.G., Turchin I.V. et al. // Bull. Russ. Acad. Sci. Phys. 2018. V. 82. No. 5. P. 502.
  3. Behera C., Pradhan N., Das P.R., Choudhary R.N.P. // J. Polym. Res. 2022. V. 29. No. 2. Art. No. 65.
  4. Shirinov A.V., Schomburg W.K. // Sens. Actuators A. Phys. 2008. V. 142. No. 1. P. 48.
  5. Gheorghi F., Stanculescu R., Curceherth L. et al. // J. Mater. Sci. 2020. V. 55. No. 9. P. 3926.
  6. Nan C.W., Bichurin M., Dong S. et al. // J. Appl. Phys. 2008. V. 103. No. 3. Art. No. 031101.
  7. Prasad P.D., Hemalatha J. // Mater. Res. Express. 2019. V. 6. No. 9. Art. No. 094007.
  8. Omelyanchik A., Antipova V., Gritsenko C. et al. // Nanomaterials. 2021. V. 11. No. 5. Art. No. 1154
  9. Амиров А.А., Каминский А.С., Архипова Е.А. и др. // Изв. РАН. Сер. физ. 2023. T. 87. № 6. C. 813; Amirov A.A., Kaminsky A.S., Arkhipova E.A. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 6. P. 715.
  10. Borvin V., Feitsova A., Mukhortova Y. et al. // Polymers. 2023. V. 15. No. 14. Art. No. 3135.
  11. Terzic I., Meereboer N.L., Mellema H.H., Loos K. et al. // J. Mater. Chem. C. 2019. V. 7. No. 4. P. 968.
  12. Jovanovic S., Spreitzer M., Tramsek M. et al. // J. Phys. Chem. C. 2014. V. 118. No. 25. P. 13844.
  13. Zimina A., Nikitin A., Lvov V. et al. // J. Compos. Sci. 2024. V. 8. No. 2. Art. No. 48.
  14. Borvin V.V., Shlapakova L.E., Mukhortova Y.R. et al. // Polymer (Guillot). 2024. V. 296. Art. No. 126765.
  15. Савин В.В., Керученко М.А., Ершов П.А. и др. // Изв. РАН. Сер. физ. 2024. T. 88. № 4. C. 668; Savin V.V., Keruchenko M.A., Ershov P.A. et al. // Bull. Russ. Acad. Sci. Phys. 2024. V. 88. No. 4. P. 577.
  16. Lei T., Carl X., Wang X. et al. // RSC Advances. 2013. V. 3. No. 47. P. 24952.
  17. Maharab P.K., Seat A., Garain S., Sen S. // Mater. Sci. Pol. 2015. V. 33. No. 1. P. 157.
  18. Nikishina E.E. // Fine Chem. Techn. 2022. V. 16. No. 6. P. 502.
  19. Goldman A. Modem Ferrite Technology. Pittsburgh: Springer, 2006. 435 p.
  20. Gao R., Chen C., Ren K. et al. // Mater. Today Chem. 2024. V. 42. Art. No. 102386.
  21. Adhlakia N., Yadav KL., Truccato M. et al. // Eur. Polym. J. 2017. V. 91. P. 100.
  22. Guillot-Ferriols M., Rodrigez-Hernández J.C., Correia D.M. et al. // Mater. Sci. Eng. C. 2020. V. 117. No. 117. Art. No. 111281.
  23. Hassanpour Amiri M., Sharifi Dehsari H., Asadi K. // J. Appl. Phys. 2022. V. 132. No. 16. Art. No. 164102
  24. Duong G.V., Grossinger R., Schoenhart M. et al. // J. Magn. Magn. Mater. 2007. V. 316. No. 2. Spec. Iss. P. 390.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025