Low-frequency Raman spectroscopy of human hair keratins
- Autores: Travkina E.I1, Chikishev A.Y.1, Brandt N.N1
-
Afiliações:
- Lomonosov Moscow State University
- Edição: Volume 89, Nº 4 (2025)
- Páginas: 616-620
- Seção: Wave Phenomena: Physics and Applications
- URL: https://rjonco.com/0367-6765/article/view/690818
- DOI: https://doi.org/10.31857/S03676765250401811
- EDN: https://elibrary.ru/GUEXKQ
- ID: 690818
Citar
Texto integral
Resumo
Low-frequency Raman lines characterizing vibrations of elements of the secondary structure of fibrillar proteins (keratins) are identified. Experiments with unpigmented human hair are performed in two configurations: with excitation radiation focused coaxially with the hair and perpendicularly to it. Based on polarization sensitivity, the bands at frequencies of 150 and 221 cm-1 are assigned to vibrations of the α-helical structures of keratins. Spectral interval of 270–340 cm-1 is assigned to vibrations of β-structures.
Sobre autores
E. Travkina
Lomonosov Moscow State University
Email: travkina.el19@physics.msu.ru
Faculty of Physics, Department of General Physics and Wave Processes Moscow, Russia
A. Chikishev
Lomonosov Moscow State UniversityFaculty of Physics, Department of General Physics and Wave Processes Moscow, Russia
N. Brandt
Lomonosov Moscow State UniversityFaculty of Physics, Department of General Physics and Wave Processes Moscow, Russia
Bibliografia
- Kuzuhara A. // Biopolymers. 2005. V. 79. No. 4. P. 173.
- Yang F.C., Zhang Y., Rheinstädter M.C. // PeerJ. 2014. V. 2. Art. No. e619.
- Robbins C.R. Chemical and Physical Behavior of Human Hair. Berlin, Heidelberg: Springer, 2012. P. 105.
- Rogers G.E. // Cosmetics. 2019. V. 6. No. 2. P. 32.
- Kuzuhara A. // J. Mol. Struct. 2013. V. 1047. P. 186.
- Chou K.C. // Biophys. Chem. 1986. V. 25. No. 2. P. 105.
- Bereins K., Fraser-Miller S.J., Gordon K.C. // Int. J. Pharm. 2020. V. 592. Art. No. 120034.
- Balakhnina I.A., Brandt N.N., Mankova A.A., Chikishev A.Y. // Vibrat. Spectrosc. 2021. V. 114. Art. No. 103250.
- Mankova A.A., Nagaeva A.I., Brandt N.N., Chikishev A.Y. // Vibrat. Spectrosc. 2023. V. 128. Art. No. 103564.
- Balakhnina I.A., Brandt N.N., Chikishev A.Y. et al. // J. Biomed. Opt. 2017. V. 22. No. 9. Art. No. 091509.
- Krimm S., Bandekar J. // Adv. Protein Chem. 1986. V. 38. P. 181.
- Lee S.H., Krimm S. // Biopolymers. 1998. V. 46. No. 5. P. 283.
- Shigeto S., Chang C.F., Hiramatsu H. // J. Phys. Chem. B. 2017. V. 121. No. 3. P. 490.
- Spiro T.G., Gaber B.P. // Annu. Rev. Biochem. 1977. V. 46. No. 1. P. 553.
- Kalanoor B.S., Ronen M., Oren Z. et al. // ACS Omega. 2017. V. 2. No. 3. P. 1232.
- Брандт Н.Н., Травкина Е.И. // Учен. зап. физ. фак-та Моск. ун-та. 2022. № 4. С. 2241103.
- Brandt N.N., Chikishev A.Y., Chulichkov A.I. et al. // Laser Phys. 2004. V. 14. No. 11. P. 1386.
- Savitzky A., Golay M.J.E. // Analyt. Chem. 1964. V. 36. No. 8. P. 1627.
- Nielsen O.F. // Annu. Rep. Prog. Chem. C. Phys. Chem. 1993. V. 90. P. 3.
- Брандт Н.Н., Травкина Е.И., Махальчик Е.В., Чилищев А.Ю. // Квант. электрон. 2022. Т. 52. № 1. С. 36; Brandt N.N., Travkina E.I., Mikhal’chik E.V., Chikishev A.Y., // Quantum Electron. 2022. V. 52. No. 1. P. 36.
- Di Foggia C., Boga, Micheletti G. et al. // Data Brief. 2021. V. 38. P. 107439.
- Paquin R., Colomban P. // J. Raman Spectrosc. 2007. V. 38. No. 5. P. 504.
- Brandt N.N., Chikishev A.Y., Mankova A.A., Sakodynskaya I.K. // J. Biomed. Opt. 2014. V. 20. No. 5. Art. No. 051015.
- Zhbankov R.G., Firsov S.P., Kolosova T.E. et al. // J. Mol. Struct. 2003. V. 656. No. 1-3. P. 275.
- Kuhar N., Sil S., Umapathy S. // Spectrochim Acta A. Mol. Biomol. Spectrosc. 2021. V. 258. Art. No. 119712.
- Eaves J.D., Feeko C.J., Stevens A.L. et al. // Chem. Phys. Lett. 2003. V. 376. No. 1-2. P. 20.
- Moore W.H., Krimm S. // Biopolymers. 1976. V. 15. No. 12. P. 2465.
- Fanconi B. // Biopolymers. 1973. V. 12. No. 12. P. 2759.
- Aliaga A.E., Aguayo T., Garrido C. et al. // Biopolymers. 2010. V. 95. No. 2. P. 135.
- Lord R.C., Yu N.T. // J. Mol. Biology. 1970. V. 51. No. 2. P. 203.
Arquivos suplementares
