Effect of deformation nanostructuring on ion-beam erosion of metals

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The effect of deformation nanostructuring of copper, nickel, and titanium on ion-induced morphology and sputtering under 30 keV argon ions high-fluence irradiation along the normal to the surface has been studied. Sputtering of a layer commensurate with the size of metal grains leads to a uniform cone-shaped relief, the stationary erosion of which occurs with significant redepositing of atoms.

全文:

受限制的访问

作者简介

N. Andrianova

Moscow State University; Moscow Aviation Institute (National Research University)

Email: anatoly_borisov@mail.ru

Skobeltsyn Institute on Nuclear Physics, Moscow State University

俄罗斯联邦, Moscow, 119991; Moscow, 125993

A. Borisov

Moscow State University; Moscow Aviation Institute (National Research University), Russia
3”STANKIN” Moscow State University of Technology

编辑信件的主要联系方式.
Email: anatoly_borisov@mail.ru

Skobeltsyn Institute on Nuclear Physics, Moscow State University

俄罗斯联邦, Moscow, 119991; Moscow, 125993; Moscow, 127055

M. Ovchinnikov

Moscow State University

Email: anatoly_borisov@mail.ru

Skobeltsyn Institute on Nuclear Physics

俄罗斯联邦, Moscow, 119991

R. Khisamov

Institute for Metals Superplasticity Problems of the Russian Academy of Sciences

Email: anatoly_borisov@mail.ru
俄罗斯联邦, Ufa, 450001

R. Mulyukov

Institute for Metals Superplasticity Problems of the Russian Academy of Sciences

Email: anatoly_borisov@mail.ru
俄罗斯联邦, Ufa, 450001

参考

  1. Efe M., El-Atwani O., Guoc Y., Klenosky D.R. // Scripta Mater. 2014. V. 70. P. 31.
  2. Chen Z., Niu L-L., Wang Z. et al. // Acta Mater. 2018. V. 147. P. 100.
  3. Wurmshuber M., Doppermann S., Wurster S. et al. // Int. J. Refract. Hard Mater. 2023. V. 111. Art. No. 106125.
  4. Nagasaki T., Hirai H., Yoshino M., Yamada T. // Nucl. Instrum. Meth. Phys. Res. B. 2018. V. 418. P. 34.
  5. Michaluk C.A. // J. Electron. Mater. 2002. V. 31. P. 2.
  6. Chen J.-K., Tsai B.-H., Huang H.-S. // Mater. Transact. 2015. V. 56. P. 665.
  7. Reza M., Sajuri Z., Yunas J., Syarif J. // IOP Conf. Ser. Mater. Sci. Eng. 2016. V. 114. Art. No. 012116.
  8. Voitsenya V.S., Balden M., Bardamid A.F. et al. // Nucl. Instrum. Meth. Phys. Res. B. 2013. V. 302. P. 32.
  9. Yang W., Zhao G., Wang Y. et al. // J. Mater. Sci. Mater. Electron. 2021. V. 32. P. 26181.
  10. Mashkova E.S., Molchanov V.A. Medium-energy ion reflection from solids. Amsterdam, 1985. 444 p.
  11. Behrisch R., Eckstein W. Sputtering by particle bombardment. Berlin, Heidelberg: Springer-Verlag, 2007. 509 p.
  12. Smirnova N.A., Levit V.I., Pilyugin V.P. et al. // Phys Met. Metallogr. 1986. V. 61. P. 1170.
  13. Nazarov A.A., Mulyukov R.R. Nanostructred materials. In: Handbook of NanoScience. Engineering and technology. Boca Raton: CRC Press, 2002. Art. No. 22.
  14. Markushev M.V., Avtokratova E.V., Krymskiy S.V. et al. // Lett. Mater. 2022. V. 12. P. 463.
  15. Khisamov R. Kh., Khalikova G.R., Kistanov A.A. et al. // Contin. Mech. Thermodyn. 2023. V. 35. P. 1433.
  16. Murzaev R.T., Bachurin D.V., Mukhametgalina A.A. et al. // Phys. Lett. A. 2020. V. 384. Art. No. 126906.
  17. Жукова Ю.Н., Машкова Е.С., Молчанов В.А. и др. // Изв. РАН. Сер. физ. 1994. Т. 58. No 3. С. 92.
  18. Борисов А.М., Виргильев Ю.С., Машкова Е.С., Немов А.С. // Изв. РАН. Сер. физ. 2006. Т. 70. № 6. С. 820.
  19. Андрианова Н.Н., Борисов А.М., Машкова Е.С., Немов А.С. // Поверхность. 2005. № 3. C. 79.
  20. Littmark U., Hofer W.O. // J. Mater. Sci. 1978. V. 13. P. 2577.
  21. Гарин Ш.Н., Додонов А.И., Машкова Е.С. и др. // Изв. АН СССР. Сер. физ. 1985. Т. 49. С. 1808.
  22. Makeev M.A., Barabasi A.-L. // Nucl. Instrum. Meth. Phys. Res. B. 2004. V. 222. P. 316.
  23. Stadlmayr R., Szabo P.S., Berger B.M. et al. // Nucl. Instrum. Meth. Phys. Res. B. 2018. V. 430. P. 42.
  24. Шульга В.И. // Поверхность. Рентген. синхротр. и нейтрон. исслед.2020. № 12. С. 83.
  25. Борисов А.М., Машкова Е.С., Овчинников М.А. и др. // Поверхность. Рентген. синхротр. и нейтрон. исслед.2022. № 3. С. 71.
  26. Борисов А.М., Овчинников М.А., Машкова Е.С. и др. // Письма в ЖТФ. 2022. Т. 48. № 12. С. 24.
  27. Cupak C., Szabo P.S., Biber H. et al. // Appl. Surf. Sci. 2021. V. 570. Art. No. 151204.
  28. Szabo. P.S., Cupak C., Biber H. et al. // Surf. Interfaces. 2022. V. 30. Art. No. 101924.
  29. Diddens C., Linz S.J. // Eur. Phys. J. B. 2015. V. 88. P. 190.
  30. http://www.srim.org.
  31. Matsunami N., Yamamura Y., Itikawa Y. et al. // Atom. Data Nucl. Data Tables. 1984. V. 31. P. 1.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. SEM images of the surface of copper samples with different structures after irradiation with Ar+ ions with an energy of 30 keV: (a) ultrafine-grained, irradiated with a fluence of 3 1018 ion/cm2, (b) fine-grained – with a fluence of 3 1018 ion/cm2, (c) fine-grained – with a fluence of 1.2 1019 ion/cm2.

下载 (367KB)
3. Fig. 2. SEM images of the surface of titanium samples after irradiation with Ar+ ions with an energy of 30 keV: (a) ultrafine-grained, irradiated with a fluence of 3 1018 ion/cm2, (b) coarse-grained – with a fluence of 1.2 1019 ion/cm2.

下载 (329KB)
4. Fig. 3. Dependence of the sputtered layer thickness Δx on the irradiation fluence of Ar+ ions with an energy of 30 keV for metals with different structures.

下载 (119KB)
5. Fig. 4. Distribution of the inclination angles θ of the cones for ultrafine-grained and fine-grained copper samples irradiated at different fluences (a), dependence of the sputtering coefficient on the inclination angle θ for the case of a single cone Y and a cone-shaped relief Yk on the copper surface when irradiated with Ar+ ions with an energy of 30 keV (b).

下载 (227KB)

版权所有 © Russian Academy of Sciences, 2024