Influence of the Gd Concentration on Superconducting Properties in Second-Generation High-Temperature Superconducting Wires

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Systematic studies of second-generation high-temperature superconducting wires with Gd excess relative to the stoichiometric GdBa2Cu3O7 composition are reported. It has been revealed that filamentary defects in the form of non-superconducting Gd2CuO4 phase located along the ab plane are formed during film growth. These inclusions lead to a change in the pinning mechanism of the vortex structure, due to which the peak of the critical current at +15% Gd is clearly observed.

Sobre autores

P. Degtyarenko

Joint Institute for High Temperatures, Russian Academy of Sciences

Email: degtyarenkopn@gmail.com
125412, Moscow, Russia

A. Sadakov

Lebedev Physical Institute, Russian Academy of Sciences

Email: degtyarenkopn@gmail.com
119991, Moscow, Russia

A. Ovcharov

National Research Center Kurchatov Institute

Email: degtyarenkopn@gmail.com
123182, Moscow, Russia

A. Degtyarenko

Lebedev Physical Institute, Russian Academy of Sciences

Email: degtyarenkopn@gmail.com
119991, Moscow, Russia

S. Gavrilkin

Lebedev Physical Institute, Russian Academy of Sciences

Email: degtyarenkopn@gmail.com
119991, Moscow, Russia

O. Sobolevskiy

Lebedev Physical Institute, Russian Academy of Sciences

Email: degtyarenkopn@gmail.com
119991, Moscow, Russia

A. Tsvetkov

Lebedev Physical Institute, Russian Academy of Sciences

Email: degtyarenkopn@gmail.com
119991, Moscow, Russia

B. Massalimov

Lebedev Physical Institute, Russian Academy of Sciences

Autor responsável pela correspondência
Email: degtyarenkopn@gmail.com
119991, Moscow, Russia

Bibliografia

  1. D. Uglietti, Supercond. Sci. Technol. 33, 053001 (2019).
  2. Y. H. Zhou, D. Park, and Y. Iwasa, Nat. Sci. Rev. 10, 3 (2023).
  3. M. T. Naus, R. W. Heussner, A. A. Squitieri, and D. C. Larbalestier, IEEE Trans. Appl. Supercond. 7, 1122 (1997).
  4. A. Godeke, M. C. Jewell, C. M. Fischer, A. A. Squitieri, P. J. Lee, and D. C. Larbalestier, J. Appl. Phys. 97, 9 (2005).
  5. L. Rossi, IEEE Trans. Appl. Supercond. 17, 1005 (2007).
  6. K. I. Sasaki, T. Nakamoto, N. Kimura, T. Tomaru, T. Ogitsu, N. Higashi, and T. Ichihara, IEEE Trans. Appl. Supercond. 17, 1083 (2007).
  7. B. Turck, IEEE Trans. Magn. 32, 2264 (1996).
  8. N. Mitchell, D. Bessette, R. Gallix, C. Jong, J. Knaster, P. Libeyre, C. Sborchia, and F. Simon, IEEE Trans. Appl. Supercond. 18, 435 (2008).
  9. S. Zhang, S. Xu, Z. Fan, P. Jiang, Z. Han, G. Yang, and Y. Chen, Supercond. Sci. Technol. 31, 125006 (2018).
  10. G. Blatter, M. V. Feigelman, V. B. Geshkenbein, A. I. Larkin, and V. M. Vinokur, Rev. Mod. Phys. 66, 1125 (1994).
  11. L. Bottura, S. Prestemon, L. Rossi, and A. V. Zlobin, Front. Phys. 10, 935196 (2022).
  12. E. Ban, Y. Matsuoka, T. Yoshimura, and K. Takahashi, Thin Solid Films. 338, 118 (1999).
  13. M. Inoue, S. Nishimura, T. Kuga, M. Kiuchi, T. Kiss, M. Takeo, T. Matsushita, Y. Iijima, K. Kakimoto, T. Saitoh, S. Awaji, K. Watanabe, and Y. Shiohara, Phys. C. Supercond. 372, 794 (2002).
  14. M. Iwakuma, K. Toyota, M. Nigo, T. Kiss, K. Funaki, Y. Iijima, T. Saitoh, Y. Yamada, and Y. Shiohara, Phys. C. Supercond. 412, 983 (2004).
  15. V. Chepikov, N. Mineev, P. Degtyarenko, S. Lee, V. Petrykin, A. Ovcharov, A. Vasiliev, A. Kaul, V. Amelichev, A. Kamenev, A. Molodyk, and S. Samoilenkov, Supercond. Sci. Technol. 30, 124001 (2017).
  16. S. M. Choi, G. M. Shin, and S. I. Yoo, Phys. C. Supercond. 485, 154 (2013).
  17. K. Nakashima, N. Chikumoto, A. Ibi, S. Miyata, Y. Yamada, T. Kubo, A. Suzuki, and T. Terai, Phys. C. Supercond. 463, 665 (2007).
  18. E. Mezzetti, B. Minetti, D. Andreone, R. Cherubini, L. Gherardi, and P. Metra, J. Supercond. 5, 185 (1992).
  19. D. Huang, H. Gu, H. Shang, T. Li, B. Xie, Q. Zou, D. Chen, W. Chu, and F. Ding, Supercond. Sci. Technol. 34, 045001 (2021).
  20. T. Matsunami, Y. Ichino, Y. Yoshida, A. Ichinose, and K. Matsumoto. Phys. Proc. 27, 236 (2012).
  21. M. Miura, M. Yoshizumi, Y. Sutoh, K. Nakaoka, S. Miyata, Y. Yamada, T. Izumi, Y. Shiohara, T. Goto, A. Yoshinaka, and A. Yajima, Phys. C: Supercond. 468, 15-20, 1643 (2008).
  22. A. A. Abrikosov, Sov. Phys. JETP. 5, 1174 (1957).
  23. J. G. Lin, C. Y. Huang, Y. Y. Xue, C. W. Chu, X. W. Cao, and J. C. Ho, Phys. Rev. B 51, 12900 (1995).
  24. A. Molodyk, S. Samoilenkov, A. Markelov et al. (Collaboration), Sci. Rep. 11, 2084 (2021).
  25. A. V. Ovcharov, P. N. Degtyarenko, V. N. Chepikov, A. L. Vasiliev, S. Yu. Gavrilkin, I. A. Karateev, A. Yu. Tsvetkov, and A. R. Kaul, Sci. Rep. 9, 15235 (2019).
  26. O. Y. Gorbenko, S. V. Samoilenkov, I. E. Graboy, and A. R. Kaul, Chem. Mater. 14, 4026 (2002).
  27. E. Helfand, and N. R. Werthamer, Phys. Rev. 147, 288 (1966).
  28. V. L. Ginzburg and L. D. Landau, ZhETF 20, 1064 (1950).

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Российская академия наук, 2023