Detection of Electron Paramagnetic Resonance Spectra of Optically Induced Carriers with the Properties of the Effective Mass in the WS2 Transition Metal Dichalcogenide

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The spin properties of transition metal dichalcogenides are of interest for applications in spintronics. Anisotropic electron paramagnetic resonance spectra in a WS2 single crystal under optical excitation have been detected. These spectra assumingly belong to localized carriers near the valence band and reflect features of the 5d shell of the crystal. It has been shown that the g-factor for the magnetic field perpendicular to the c‑axis of the crystal (in-plane magnetic field) is larger than that for the magnetic field parallel to the c‑axis (perpendicular to the layer plane), which can provide information on the type of the 5d function. The discussed center is most likely described by the wavefunction, which can be associated with the valence band of the crystal.

Sobre autores

R. Babunts

Ioffe Institute, 194021, St. Petersburg, Russia

Email: batueva@mail.ioffe.ru

A. Batueva

Ioffe Institute, 194021, St. Petersburg, Russia

Email: batueva@mail.ioffe.ru

A. Gurin

Ioffe Institute, 194021, St. Petersburg, Russia

Email: batueva@mail.ioffe.ru

K. Likhachev

Ioffe Institute, 194021, St. Petersburg, Russia

Email: batueva@mail.ioffe.ru

E. Edinach

Ioffe Institute, 194021, St. Petersburg, Russia

Email: batueva@mail.ioffe.ru

P. Baranov

Ioffe Institute, 194021, St. Petersburg, Russia

Autor responsável pela correspondência
Email: batueva@mail.ioffe.ru

Bibliografia

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306(5696), 666 (2004); doi: 10.1126/science.1102896.
  2. K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, Proc. Natl Acad. Sci. USA 102, 10451 (2005).
  3. P. Avouris, T. F. Heinz, and T. Low, 2D materials: Properties and devices, Cambridge University Press, Cambridge; https://doi.org/10.1017/9781316681619.
  4. A. Chaves, J. G. Azadani, H. Alsalman, D. R. da Costa, R. Frisenda, A. J. Chaves, S. H. Song, Y. D. Kim, D. He, J. Zhou, A. Castellanos-Gomez, F. M. Peeters, Zh. Liu, C. L. Hinkle, S.-H. Oh, P. D. Ye, S. J. Koester, Y. H. Lee, Ph. Avouris, X. Wang, and T. Low, npj 2D Mater. Appl. 4(29) (2020); https://doi.org/10.1038/s41699-020-00162-4.
  5. А. Б. Логинов, Р. Р. Исмагилов, С. Н. Бокова-Сирош, И. В. Божьев, Е. Д. Образцова, Б. А. Логинов, А. Н. Образцов, ЖТФ 91, 1509 (2021); DOI: https://doi.org/10.21883/JTF.2021.10.51364.102-21.
  6. В. Л. Калихман, Я. С. Уманский, УФН 108, 503 (1972).
  7. E. C. Ahn, Npj 2D Mater. Appl. 4(1), 1 (2020); doi: 10.1038/s41699-020-0152-0.
  8. A. Kumar, D. Yagodkin, N. Stetzuhn, S. Kovalchuk, A. Melnikov, P. Elliott, S. Sharma, C. Gahl, and K. I. Bolotin, Nano Lett. 21, 7123 (2021).
  9. К. В. Лихачев, И. Д. Бреев, С. В. Кидалов, П. Г. Баранов, С. С. Нагалюк, А. В. Анкудинов, А. Н. Анисимов, Письма в ЖЭТФ 116(11), 810 (2022).
  10. E. V. Edinach, Yu. A. Uspenskaya, A. S. Gurin, R. A. Babunts, H. R. Asatryan, N. G. Romanov, A. G. Badalyan, and P. G. Baranov, Phys. Rev. B 100, 104435 (2019).
  11. Р. А. Бабунц, А. С. Гурин, И. В. Ильин, А. П. Бундакова, М. В. Музафарова, А. Г. Бадалян, Н. Г. Романов, П. Г. Баранов, ФТТ 63(11), 1906 (2021).
  12. H. Zobeiri, S. Xu, Y. Yue, Q. Zhang, Y. Xie, and X. Wang, E ect of temperature on Raman intensity of nm-thick WS2: combined e ects of resonance Raman, optical properties, and interface optical interference, Nanoscale, The Royal Society of Chemistry 12(10), 6064 (2020); doi: 10.1039/c9nr10186a rsc.li/nanoscale.
  13. H. Zeng, G.-B. Liu, J. Dai, Y. Yan, B. Zhu, R. He, L. Xie, S. Xu, X. Chen, W. Yao, and X. Cui, Sci. Rep. 3, 1608 (2013); doi: 10.1038/srep01608.
  14. P. G. Baranov, H.-J. von Bardeleben, F. Jelezko, and J. Wrachtrup, Magnetic Resonance of Semiconductors and Their Nanostructures: Basic and Advanced Applications, Springer Series in Materials Science, Springer-Verlag, GmbH, Austria (2017), v. 253.
  15. Q. Cheng, J. Pang, D. Sun, J. Wang, S. Zhang, F. Liu, Y. Chen, R. Yang, N. Liang, X. Lu, Y. Ji, J. Wang, C. Zhang, Y. Sang, H. Liu, and W. Zhou, InfoMat. 2(4), 656 (2020; wileyonlinelibrary.com/journal/inf2; https://doi.org/10.1002/inf2.12093.
  16. A. Abragam and B. Bleaney, Electron Paramagnetic Resonance of Transition Ions, Clarendon Press, Oxford (1970).
  17. P. Byrley, M. Liu, and R. Yan, Front. Chem. 7, 442 (2019); doi: 10.3389/fchem.2019.00442.
  18. I. Tanabe, M. Gomez, W. C. Coley, D. Le, El. M. Echeverria, G. Stecklein, V. Kandyba, S. K. Balijepalli, V. Klee, A. E. Nguyen, E. Preciado, I-H. Lu, S. Bobek, D. Barroso, D. Martinez-Ta, A. Barinov, T. S. Rahman, P. A. Dowben, P. A. Crowell, and L. Bartels, Appl. Phys. Lett. 108, 252103 (2016); https://doi.org/10.1063/1.4954278.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Российская академия наук, 2023